Method for detecting syphilis using synthetic antigens
a technology of synthetic antigens and syphilis, applied in the field of microbiology and immunology, can solve the problems of inability to detect, diagnose and monitor the treatment of syphilis, inability to detect, or die, and inability to detect the presence of syphilis, so as to prevent the spread of
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Examples
example 1
Preparation of a Synthetic Cardiolipin and Lecithin Composition
[0058]Tetramyristoyl cardiolipin, purified by silica gel chromatography to approximately 99% purity, was obtained in powder form from Avanti Polar Lipids (Alabaster, Ala.). The final concentration of sodium salt was tested for purity by thin layer chromatography and high-pressure liquid chromatography. The sample was stored at −20° C. The tetramyristoyl cardiolipin was originally synthesized from semi-synthetic lipid precursors that originated from a plant source.
[0059]Lecithin (1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine) powder, purified by silica gel chromatography to a purity of approximately 99%, was also obtained from Avanti Polar Lipids. The lecithin was originally isolated from soybeans.
[0060]A 1.2% solution of cholesterol (Avanti Polar Lipids) in absolute ethanol was prepared and filtered with alcohol-rinsed filter paper #560. The cholesterol was originally derived from wool grease and purified by re-crystall...
example 2
Comparative Analysis of Synthetic VDRL Slide Assay versus Conventional VDRL Slide Assay
[0062]The sensitivity of the VDRL slide assay using the synthetic cardiolipin and lecithin composition described in Example 1 was compared with the sensitivity of the conventional VDRL slide assay as described in A Manual of Tests for Syphilis, 9th ed., 159-77, Larsen, S. A., Pope, V., Johnson, R. E. and Kennedy, E. J. Jr. (Eds.), American Public Health Association, Washington, D.C. Briefly, 0.4 ml VDRL-buffered saline (formaldehyde, Na2HPO4, KH2PO4, NaCl and distilled water) was added to the bottom of a round 30 ml glass-stoppered bottle with a flat inner-bottom surface or a 25 ml glass-stoppered Erlenmeyer flask. Subsequently, 0.5 ml of the antigen composition suspension was added directly to the saline at a rate of 6 seconds / 0.5 ml of antigen suspension while rotating the bottle continuously. Rotation continued for ten seconds until 4.1 ml of buffered saline was added. The bottle was tightly ca...
example 3
Comparative Analysis of Synthetic VDRL antigen and Natural VDRL antigen (Qualitative Test)
[0069]Samples from 100 frozen banked sera, reactive by the nontreponemal (RPR) test, were used to compare the CDC synthetic VDRL antigen and a reference VDRL antigen (Natural VDRL antigen). The serum samples were heat inactivated for 30 minutes at 56° C. Fifty microliters of each serum sample was placed into a corresponding paraffin or ceramic-ringed slide. A drop (17 μL) of each of the antigens was placed in the corresponding rings of the slide. The slides were placed in a mechanical rotator and rotated for 4 minutes at 180 rpm and then read microscopically. The degree of flocculation of the two antigens was observed and recorded.
[0070]As reported in Table 4 (undocumented) all of the sera (100%), reactive by RPR, were reactive with the CDC synthetic VDRL antigen while only 88% were reactive with the natural VDRL antigen.
[0071]Additionally, the synthetic VDRL antigen and the natural VDRL antige...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com