Binary compound flooding compound and preparation method thereof

A technology of binary compound flooding and composition, which is applied in the direction of drilling composition, chemical instruments and methods, etc., can solve the problems of alkali corrosion, high use concentration, and poor oil displacement efficiency in ASP flooding, and achieve reduction Strong interfacial tension, excellent performance, and easy biodegradability

Active Publication Date: 2011-10-19
CHINA PETROLEUM & CHEM CORP +1
View PDF6 Cites 12 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0009] One of the technical problems to be solved by the present invention is that the oil displacement agent containing surfactant in the prior art has poor oil displacement efficiency under high temperature and high salinity conditions, high use concentration and the impact of alkali on formation and oil well in ASP flooding. problems of corrosion and fouling damage, providing a new binary compound flooding composition

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Binary compound flooding compound and preparation method thereof
  • Binary compound flooding compound and preparation method thereof
  • Binary compound flooding compound and preparation method thereof

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0033] (a) Synthesis of N, N-dilauroyl ethylenediamine dimethyl propionic acid

[0034] 300 grams (1.5 moles) of lauric acid, 267.8 grams (2.25 moles) of thionyl chloride and 4.5 grams of DMF were added to a 1000-milliliter four-necked flask equipped with a sealed mechanical stirrer, a thermometer, a condenser tube, etc., and reacted at 90 ° C for 3 After one hour, excess thionyl chloride was distilled off under reduced pressure to obtain lauroyl chloride. Add 45.0 grams (0.75 moles) of anhydrous ethylenediamine and 180 grams of 1,4-dioxane to another 2000 ml four-neck flask equipped with a sealed mechanical stirrer, a thermometer, and a condenser tube, heat up to 50° C., and slowly Add 165.0 grams (1.65 moles) of methyl methacrylate dropwise, continue the reaction for 3 hours after dropping, remove unreacted methyl methacrylate and solvent 1,4-dioxane under reduced pressure, and the residue is ethylenediamine dioxane. Methyl methpropionate. Use 50wt% sodium hydroxide to adj...

Embodiment 2

[0041] (a) Synthesis of N, N-dilauroyl hexamethylenediamine dimethylpropionic acid

[0042] With [Example 1] (a), the difference replaces 45.0 grams (0.75 moles) of anhydrous ethylenediamine with 87.0 grams (0.75 moles) of anhydrous hexamethylenediamine, and the rest are the same to obtain N, N-dilauroyl Hexamethylenediamine dimethyl propionic acid 328.6 grams, molar yield 67.2%.

[0043] (b) Synthesis of N,N-dilauroylhexamethylene diamine dimethyl propionate dipolyoxyethylene ether (n=3)

[0044] With [Example 1] (b), the difference is 328.6 grams (0.504 moles) of N, N-dilauroyl hexamethylenediamine dimethyl propionic acid instead of 306.2 grams (0.514 moles) of N, N-didodecanoic acid The consumption of acyl ethylenediamine dimethyl propionic acid and oxirane is 133.1g (3.024 moles), and the consumption of the basic compound of calcium is 7.5 grams to obtain N, N-dilauroyl hexamethylene diamine Dipolyoxyethylene methpropionate (n=3) was 409.5 grams, and the molar yield was 88...

Embodiment 3

[0049] (a) Synthesis of N, N-didecanoyl butanediamine dimethylpropionic acid

[0050] With [Example 1] (a), the difference replaces 300.0 grams (1.5 moles) of lauric acid with 261.0 grams (1.5 moles) of capric acid, and replaces 45.0 grams (0.75 grams) of anhydrous butanediamine with 66.0 grams (0.75 moles). mol) anhydrous ethylenediamine, and the rest are the same to obtain 283.3 grams of N, N-didecanoyl butanediamine dimethylpropionic acid, and the molar yield is 66.5%.

[0051] (b) Synthesis of N, N-didecanoyl butanediamine dimethyl propionate dipolyoxyethylene ether (n=3)

[0052] With [Example 1] (b), the difference is 283.3 grams (0.499 moles) of N, N-didecanoyl butanediamine dimethyl propionic acid instead of 306.2 grams (0.514 moles) of N, N-dilauroyl The consumption of ethylenediamine dimethylpropionic acid and oxirane is 131.7g (2.994 moles), and the consumption of the basic compound of calcium is 6.4 grams to obtain N, N-didecanoyl butanediamine dimethyl Dipolyoxy...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
shear viscosityaaaaaaaaaa
shear viscosityaaaaaaaaaa
shear viscosityaaaaaaaaaa
Login to view more

Abstract

The invention relates to a binary compound flooding compound and a preparation method thereof, mainly solving the problems that the oil displacement agent containing surface active agents has poor oil displacement efficiency and high using concentration under the high-temperature and high-salt conditions, and corrosion and scale deposition to a stratum and an oil well, caused by alkali in the ternary compound flooding, happen in the prior art. The binary compound flooding compound comprises the following components in percentage by weight: (1) 0.01-5.0 percent of N,N-bi fatty acyl group diamine neopentanoic acid di-polyoxyethylene ether bisulphonate; (2) 0.01-3.0 percent of polymer; (3) 92.0-99.98 percent of formation water, wherein in the general molecular formula of the component (1), R1 is C9-C17 alkyl group, R2 is C2-C6 alkyl group, n is adding composite number of ethoxy groups (EO) and is one integer from 2-7; M is one metal ion of K, Na or Li; the polymer is selected from one ofpolyacrylamide with superhigh molecular weight (viscosityaverage molecular weight is 25,000,000), temperature-resisting and salt-resisting polymer or xanthogen gum, and water is selected from the formation water of the oil field. By the technical scheme, the problems are better solved, and the binary compound flooding compound is suitable for tertiary oil recovery production in the oil field.

Description

technical field [0001] The invention relates to a binary compound flooding composition and a preparation method thereof. Background technique [0002] With the development of society and economy, people's demand for oil continues to increase and oil reserves decrease, and oil, as a non-renewable resource, is becoming more and more valuable. The problems we are facing are: first, the contradiction between supply and demand is prominent, the demand for oil is getting bigger and bigger, and new oil fields are getting fewer and fewer; second, there is still a large amount of crude oil left in the depleted oil reservoirs. Primary oil recovery (POR) can produce 10-25% of underground crude oil, and secondary oil recovery (SOR) can recover 15-25% of underground crude oil, that is, primary oil recovery and secondary oil recovery only produce 25-50% of underground crude oil. In order to ensure the long-term stable supply of oil and meet the needs of human beings, it is necessary to r...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(China)
IPC IPC(8): C09K8/584C09K8/588
Inventor 沈之芹张卫东王辉辉孙文彬
Owner CHINA PETROLEUM & CHEM CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products