Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Plant-derived alkaline alpha-galactosidase

Inactive Publication Date: 2006-04-20
AGRI RES ORG
View PDF1 Cites 10 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0037] According to yet another aspect of the present invention there is provided a method for facilitating the crystallization of sugar beet sucrose from sugar beet molasses, the method comprising the steps of (a) providing a plant-derived alkaline alpha galactosidase, and (b) contacting the sugar beet molasses with the plant-derived alkaline alpha galactosidase at a pH greater than 7.0, so as to hydrolyze the raffinose in the sugar beet molasses to galactose and sucrose, thereby facilitating the crystallization of sugar beet sucrose from the sugar beet molasses.
[0038] According to another aspect of the present invention there is provided a method for reducing the capability of a foodstuff to cause flatulence during digestion of said foodstuff, the method comprising the steps of (a) providing a plant-derived alkaline alpha galactosidase, and (b) contacting the foodstuff prior to ingestion with the plant-derived alkaline alpha galactosidase at a pH greater than 7.0, so as to hydrolyze an alpha-galactosyl saccharide contained in the foodstuff, thereby reducing the capability of the foodstuff to cause flatulence during digestion.

Problems solved by technology

This is clearly a disadvantage, a wider substrate specificity affording more numerous practical applications.
However, all of these studies were carried out using the non-specific artificial substrate, p-nitrophenyl alpha-galactopyranoside (pNPG), which indicates alpha-galactosidase activity but does not reflect either the physiological role of the particular enzyme forms, or, more importantly, the substrate specificity of the particular enzyme.
Thus, the abovementioned observations of alkaline alpha-galactosidase enzyme activity in the fruit pedicel or fruit tissue, assayed with pNPG, give no indication as to the actual character of the catalytic activity measured, and cannot clearly distinguish such activity from previously described alpha-galactosidase.
The use of an acidic form of alpha-galactosidase in biotechnological and industrial applications presents problems.
Lowering the pH of the soybean milk solution to conform to the acidic enzyme's pH optimum caused the soybean proteins to precipitate and left a sour taste to the milk.
The use of alpha-galactosidase with an acidic pH optimum for the removal of raffinose from beet sugar faces a similar problem.
An additional limitation on the industrial utility of the currently available alpha-galactosidases is that their activity is frequently inhibited by the product of the reaction, galactose.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Plant-derived alkaline alpha-galactosidase
  • Plant-derived alkaline alpha-galactosidase
  • Plant-derived alkaline alpha-galactosidase

Examples

Experimental program
Comparison scheme
Effect test

examples

Materials and Experimental Methods

[0097] Cultivation of Plants and Preparation of Samples:

[0098] Plants of muskmelon (Cucumis melo L.cv C-8) were grown under standard conditions in a greenhouse in Beit Dagan, Israel. Female flowers were hand pollinated and tagged at anthesis and fruit load was limited to 1 fruit per plant after 10 DAA (days after anthesis). For the study of fruit development, primary fruits were harvested from 3 days prior to anthesis, at anthesis and 1, 2, 4, 6, 10, 14, 20, 30 and 45 days after anthesis (DAA). Whole fruits before 6 DAA, and the inner mesocarp of the fruit tissues after 10 DAA, were thinly sliced and immediately frozen in liquid nitrogen prior to storage at −80 C. Chemicals and enzymes, unless specified otherwise, were purchased from Sigma and Boehringer, Mannheim, Germany.

[0099] Germinating barley seeds were prepared by imbibing 340 seeds of barley (H. vulgare var. Himalaya) on moist filter paper at 25° C. for 24 hours. The embryos were carefull...

example i

Purification of Alpha-Galactosidases from Melon Fruit

[0126] Three forms of alpha-galactosidase were resolved from young melon fruit mesocarp by DEAE-Sepharose ion exchange chromatography, in conjunction with Mono-Q chromatography, using pNPG as substrate (FIGS. 1 and 2). The first peak showed higher activity at pH 5.5 than at pH 7.5, while the latter two peaks both showed activity at pH 7.5 with little activity at pH 5.5. Accordingly, we referred the first peak as an acid form of alpha-galactosidase and the other two peaks as alkaline alpha-galactosidases Form I and Form II, respectively. The three enzyme forms were partially purified for the purpose of characterization (Table 1). Mono-Q ion exchange successfully resolved the two alkaline forms, and hydrophobic interaction chromatography was useful in the purification of alkaline Form II. After further purification, as described in Table 1, the two alkaline forms were electrophoresed on a denaturing SDS-PAGE gel and a photograph of...

example 2

Changes of Acid and Alkaline Alpha-Galactosidases During Melon Fruit Development

[0138] The substrate preferences (Table 2) and pH profiles (FIG. 6A) from the purified acid and Form I and Form II alkaline alpha-galactosidases allowed us to measure and estimate their activities even in crude extracts of melon fruit, using their natural substrates. Very little overlap in activity occurs between pH 5.5 and pH 7.5 (FIG. 4A) and, at pH 7.5, the activities of alkaline alpha-galactosidase I and II in the crude extracts could be distinguished by their respective activities when using raffinose or stachyose as substrate. The activity with raffinose at pH 7.5 is a good indicator of Form I activity since Form II is relatively specific for stachyose. There should be an overestimation of Form II activity when using stachyose due the hydrolysis of this substrate by Form I which is also present in the crude extract. Nevertheless, distinct developmental patterns of alpha-galactosidase activities ar...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Massaaaaaaaaaa
Massaaaaaaaaaa
Massaaaaaaaaaa
Login to View More

Abstract

There are provided novel plant-derived enzymes for hydrolysis of sugars and particularly an alkaline alpha-galactosidase which hydrolyzes a broad spectrum of galactosyl-saccharides such as melibiose, raffinose and stachyose and guar gum, at neutral to alkaline pH conditions.

Description

[0001] This is a continuation-in-part of U.S. patent application Ser. No. 09 / 744,086, filed Jul. 19, 1999, which is a U.S. National Phase application of PCT / 1L99 / 00395, filed Jul. 19, 1999, which claims priority from Israeli Patent Application No. 125423, filed Jul. 20, 1998.FIELD OF THE INVENTION [0002] The present invention relates generally to plant-derived enzymes for hydrolysis of sugars and particularly to an alkaline alpha-galactosidase which hydrolyzes a broad spectrum of galactosyl-saccharides such as melibiose, raffinose and stachyose and guar gum, at neutral to alkaline pH conditions. BACKGROUND OF THE INVENTION [0003] The enzyme alpha-galactosidase (E.C. 3.2.1.22; alpha-D-galactoside galactohydrolase) catalyzes the hydrolysis of the terminal linked alpha-galactose moiety from galactose-containing oligosaccharides. These include, for example, the naturally occurring disaccharide melibiose (6-O-alpha-D-galactopyranosyl-D-glucose), the trisaccharide raffinose (O-alpha-D-gal...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): C12P19/04C12N9/40C07H21/04C12P21/02C12N5/04A23L25/00C12N15/56
CPCA23C11/106A23L1/034A23L1/2113C12N9/2465C12Y302/01022A23L29/06A23L11/33A23L11/65
Inventor SCHAFFER, ARTHURZHIFANG, GAO
Owner AGRI RES ORG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products