Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Communication semiconductor integrated circuit, a wireless communication apparatus, and a loop gain calibration method

a technology of communication semiconductor and integrated circuit, which is applied in the direction of gain control, phase-modulated carrier system, digital transmission, etc., can solve the problems of difficulty in meeting specifications, precision of modulation, and degree of noise suppression, so as to reduce variation, open loop, and calculate the variation of amplifier loop gain

Inactive Publication Date: 2006-08-24
TAKANO RYOICHI +4
View PDF25 Cites 59 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

This approach enhances modulating precision, reduces spectral re-growth, and effectively suppresses noise, while maintaining loop stability by adjusting the loop filter characteristic and correcting the gain variations caused by component dispersion.

Problems solved by technology

As a result, there has been detected a problem that when the 8-PSK modulation is carried out in the polar loop method, it is difficult to satisfy requirements of specifications of, for example, precision of modulation for a transmission waveform (error vector magnitude (EVM)) and a degree of noise suppression.
Specifically, there is a problem in which while the modulating precision is higher and a characteristic called “spectral re-growth” indicating a degree of waveform distortion becomes better when the frequency bandwidth of the amplitude control loop (a frequency range from a central frequency of the transmission carrier wave to a frequency thereof for which an open loop gain is 0 decibel (dB)) is wider, attenuation of the amplitude control loop becomes smaller for a receiving or reception frequency apart from 20 megaherz (MHz) from the central frequency of the transmission carrier wave and a sufficient degree of noise suppression cannot be obtained when the bandwidth is wide.
In addition, in two feedback loops, the loop gain particularly of the amplifier control loop varies due to dispersion or variation in characteristics of constituent components in production and hence stability of the loop decreases, and hence it is difficult to obtain a desired output level in a specified or predetermined period of time.
It has been also detected that the system of the polar loop has a problem that when an output control operation is conducted for the amplitude modulation in the amplitude control loop, the gain of the amplitude control loop changes to reduce a phase margin and hence stability of the loop is lowered.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Communication semiconductor integrated circuit, a wireless communication apparatus, and a loop gain calibration method
  • Communication semiconductor integrated circuit, a wireless communication apparatus, and a loop gain calibration method
  • Communication semiconductor integrated circuit, a wireless communication apparatus, and a loop gain calibration method

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0041]FIG. 1 shows an outline of a configuration of an embodiment of a transmitting circuit of polar loop type according to the present invention. The configuration of FIG. 1 includes a high-frequency integrated circuit (IC) 100 to conduct GMSK modulation in a GSM system or 8-PSK modulation in an EDGE system, a power module 200 including a high-frequency power amplifier circuit (to be abbreviated as a power amplifier hereinbelow) 210 to conduct communication via an antenna ANT and a coupler 220 to detect transmission power, a baseband circuit 300 which generates an I / Q signal according to transmission data (a baseband signal), a control signal of the radio-frequency IC 100, and a bias voltage VBIAS for the power amplifier 210 in the power module 200, a transmission oscillator TxVCO to generate a phase-modulated transmission signal (carrier wave), and a loop filter LPF1 to limit a bandwidth of a phase control loop.

[0042] The radio-frequency IC 100 is a semiconductor integrated circu...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

A polar-loop wireless communication apparatus includes, on a forward path between an amplitude detector and a power amplifier which constitute an amplitude control loop, a variable gain amplifier and a switch to change characteristics of a loop filter to output a frequency bandwidth of the amplitude control loop to an order less than an order for normal operation. The system is operated with the characteristics set to the lower order to measure outputs from the power amplifier to calibrate the output power of the power transmitter, and the register is operated with the characteristics set to the higher order to measure the open loop gain of the amplitude control. According to results of the calculation, data to correct gain characteristics of the variable gain amplifier with respect to an output control signal is stored in a nonvolatile memory of a baseband circuit.

Description

CROSS-REFERENCE TO RELATED APPLICATION [0001] The present application relates to subject matters described in the U.S. patent applications being file based on the United Kingdom Patent Applications No. 0212737.1 filed on May 31, 2002, No. 0212729.8 filed on May 31, 2002, No. 0212723.1 filed on May 31, 2002, No. 0212735.5 filed on May 31, 2002, and No. 0212732.2 filed on May 31, 2002. All of those U.S. applications are assigned to the same assignees of the present application. BACKGROUND OF THE INVENTION [0002] The present invention relates to a technique for improving controllability of output power using a power control signal in a high-frequency power amplifier circuit and for calibrating variation or dispersion in a characteristic thereof due to deviation of a gain of an amplifier control loop, and in particular, to a technique effectively applicable to a communication semiconductor integrated circuit including a phase detecting or detector circuit and an amplifier detecting circ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): H01Q11/12H04B1/04H03G3/30H04L27/12H04L27/20H04L27/36
CPCH03G3/3047H04L27/368
Inventor TAKANO, RYOICHITOYOTA, KENJIWURM, PATRICKHENSHAW, ROBERT ASTLEFREEBOROUGH, DAVID
Owner TAKANO RYOICHI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products