Vacuum sterilization process and devices

a sterilization process and vacuum technology, applied in the field of sterilization process and operational devices, can solve the problems of high energy consumption of systems, high risk of re-contamination, and material contamination during the process, and achieve the effect of increasing efficiency

Inactive Publication Date: 2006-12-14
CISA
View PDF11 Cites 22 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0020] 4.) The reduction of the water in the sterilizing gas which is injected increases efficiency and allows for the penetration of vapour into the environment with restricted diffusion. In this innovative process, the separation of water from the solution of the peracetic acid mixture, before the injection of the gas, is carried out with evaporation under vacuum and heating;
[0021] 5.) Evacuation of the residual vapour of the sterilizing gas by means of a vacuum pump of the liquid loop type after the period of time for diffusion and sterilization of the articles. As a departure from the previous processes, in which the sterilizing gas is evacuated by a high-vacuum pump in order to reduce the pressure and form plasma with this gas, with the present invention filtered atmospheric air is injected into the residual sterilizing gas, then evacuated with a vacuum pump of the liquid loop type, with the mixture being diluted in water. The cycle is repeated two or more times. After this operation, a mechanical vacuum pump is used t

Problems solved by technology

Despite the high diversity of the sterilization systems which use peracetic acid and hydrogen peroxide and ethylene oxide, there are still a number of problems of operational and financial nature, as well as risks of contamination of the materials and the environment during the process.
For example, application in diluted form requires large volumes of the sanitizing liquid, the materials cannot be packed, and sterile water is required for the rinsing, as well as a clean area for drying, thus incurring in the risk of re-contamination.
These systems incur high energy consumption, as a function of the use of heater devices.
The process with ethylene oxide requires long periods of sterilization, as well as aeration, since this substance is highly toxic.
The difficulty with penetration of the hydrogen peroxide in the environment with restricted diffusion is due to the presence of water vapour which, because it reaches the area concerned first, has a higher vapour press

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Vacuum sterilization process and devices
  • Vacuum sterilization process and devices
  • Vacuum sterilization process and devices

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0045] With reference to the drawings, the present invention relates to a vacuum sterilization process with the application of steam of a mixture of peracetic acid with hydrogen peroxide and residual gas plasma from atmospheric air, excited by pulsed electrical discharge; to operational devices and methods used in the sterilization process, the process and devices being exemplified and illustrated in particular in a diagrammatical manner in FIG. 1, which comprises the sterilization of surgical and associated articles, and products in general (M), with the arrangement that, at the beginning of the sterilization process, the materials which are to be sterilized are arranged and subjected to a vacuum in a stainless steel chamber (1), with the option of one or two doors (2) and (3); connected to the chamber (1) is a vacuum system consisting of at least one mechanical vacuum pump (4) and at least one ring-type liquid vacuum pump (5), connected in parallel and linked to the said chamber b...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

Vacuum sterilization process with the application of vapour of a mixture of peracetic acid with hydrogen peroxide and residual gas plasma from atmospheric air, excited by pulsed electrical discharge; operational devices and methods used in the sterilization process, preferably a process of sterilization in vacuum, dry, and at low temperature (room temperature).

Description

TECHNICAL FIELD [0001] The present invention relates to a sterilization process, operational devices and respective methods applied for the sterilization of various different items of apparatus and products, using vacuum techniques, the application of sterilizing gas and plasma. More particularly, this invention makes use of gas from a solution of peracetic acid or hydrogen peroxide evaporated under vacuum, with the partial separation of water from the solution for sterilization, as well as the use of plasma from residual atmospheric air for the elimination of residues, with temperature monitoring and control. BACKGROUND ART [0002] Among chemical methods of sterilization, the use of hydrogen peroxide and peracetic acid is acquiring considerable prominence. This is due to their bactericidal, sporicidal, and fungicidal properties, which have been known for many years (BAULDRY, M. G. C., The bactericidal, fungicidal and sporicidal properties of hydrogen peroxide and peracetic acid, Jou...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): A61L2/20A61L2/02A61L2/14A61L2/24A61L2/26
CPCA61L2/02A61L2/14A61L2202/122A61L2/24A61L2/208
Inventor SHIOSAWA, TADASHI
Owner CISA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products