Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Methods of preparing polymers having terminal amine groups

a technology of terminal amine group and polymer, which is applied in the field of preparing activated polymers, can solve the problems of significant percentage of peg-halide hydrolysis, significant reduction of purity of the desired end product, and significant increase in the cost of the desired product, so as to achieve high purity and reduce cost. , the effect of high purity

Inactive Publication Date: 2007-03-01
ZHAO HONG +2
View PDF4 Cites 3 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0017] One of the chief advantages of the present invention is that the resulting terminal amine-containing polymers such as polyalkylene oxide derivatives thereof are prepared in high purity. Thus, product contaminants, namely, the starting materials, such as mPEG-OH are not found in appreciable amounts, that is, they are found in amounts of less than about 5%, preferably less than about 2% and most preferably less than about 1%. When the preferred PEG-amines are more economically formed in high purity, the artisan can make the end product which incorporates the PEG-amine more efficiently and at lower cost. The reaction to make the PEG-amine can be forced to completion and the excess small molecule reagents can be removed by recrystallization. The efficiencies result, in part, because the separation of the desired amine-terminated polymer from the starting alcohol or reactive intermediate (e.g. tosylate) is not required. Furthermore, column chromatography based purification techniques are not required to provide the desired PEG-amine. Thus, the present invention provides highly pure PEG-amine without costly column purification.
[0018] Another advantage is the fact that the amine made from the processes described herein will not change the backbone of the PEG at all. Therefore, it will be compatible with all current and future applications for PEG amines.

Problems solved by technology

More importantly, a major disadvantage is that a significant percentage of PEG-halide becomes hydrolyzed to form PEG-OH during the concentrated aqueous ammonia treatment.
Consequently, the purity of the desired end product can decrease considerably.
The harsh conditions required for removal of the phthaloyl group and the need for intensive purification of the final product add significantly to the cost of the desired product.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Methods of preparing polymers having terminal amine groups
  • Methods of preparing polymers having terminal amine groups
  • Methods of preparing polymers having terminal amine groups

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0063]

PEG-tosylate (PEG-OTs).

Method A. A solution of 20KDaΔPEG-OH (i.e. bis-PEG-OH) (2.8 g, 0.14 mmol) was azeotroped for 2 hours in toluene. The toluene was removed under vacuum and the solid residue was redissolved in 50 mL of anhydrous dichloromethane (DCM). To this solution was added triethylamine (195 μL, 1.4 mmol) and 4-dimethylaminopyridine (DMAP) (165 mg, 1.35 mmol). The mixture was cooled in an ice bath and p-toluenesulfonyl chloride (267 mg, 1.4 mmol) in DCM was then added dropwise. The reaction mixture was gradually warmed to room temperature and stirred overnight. The reaction mixture was washed twice with a 0.1 N HCl solution. The organic phase was evaporated under vacuum. The resulting solid was dissolved in the minimum amount of CH2Cl2 and then, precipitated by addition of ethyl ether. After filtration the resulting solid was recrystallized with 2-isopropanol (IPA). 13C NMR (67.8 MHz, CDCl3) δ143.92, 132.38, 129.1, 127.29, 67.99-70.22, 21.09.

Method B. To a soluti...

example 2

[0064]

PEG-chloride. A solution of 12KDamPEG-OH (12 g, 0.1 mmol) was azeotroped for 2 hours in toluene. This mixture was cooled to 30° C. and thionyl chloride was then added. The reaction mixture was refluxed for 18 hours, followed by partial removal of the solvent, and precipitation of the product with ethyl ether. The solid was collected by filtration, washed with ethyl ether, and recrystallized from isopropanol to yield the product (10.8 g, 0.81 mmol). 13C NMR (67.8 MHz, CDCl3) δ 69.64-70.9, 42.5.

PEG-azide (PEG-N3). To a solution of 12KDamPEG-Cl (10.6 g, 0.883 mmol) in anhydrous DMF was added NaN3 (919 mg, 35.5 mmol). The reaction was heated at 80° C. for 24 hours. After addition of ethyl ether, the solid was collected by filtration. The solid residue was dissolved in DCM and the solution was washed with water three times, dried over NaSO4, filtered and evaporated under vacuum. The resulting solid was recrystallized from DCM / ethyl ether to give the PEG-azide (9.54 g, 0.795 mmol...

example 3

mPEG 30K RNL 9 Linker

[0065] In this example, the 30KDamPEG-NH2 of Example 1 is converted into the activated PEG linker according to the following reaction scheme.

mPEG30K RNL9 OTBDMS 23:

To a solution of alcohol, 22 (238 mg, 1 mmol, 6 eq) in anhydrous CH3Cl were added DSC (235 mg, 0.92 mmol, and 5.5 eq) and pyridine (88 μL, 1.08 mmol, 6.5 eq). The resulting suspension was heated to reflux overnight, cooled to room temperature and added to a solution of 30KDamPEG-NH2 (hereinafter 21) (5 g, 0.17 mmol, 1 eq) in 25 mL of anhydrous CH3Cl. After stirring at room temperature for 3 days, the solvent was evaporated under vacuum. The resulting solid was dissolved in the minimum amount of dichloromethane and then, precipitated by addition of ether, filtered and recrystallized with CH3CN / IPA to give 4.85 g (94% yield). GPC: 98.39%. 13C NMR (75.4 MHz, CDCl3) δ 154.47, 149.59, 137.90, 126.52, 121.02, 69.09-71.65 (PEG), 64.24, 58.83, 40.83, 25.84, 18.27, 5.28.

mPEG30K RNL9OH 24:

To a solutio...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Fractionaaaaaaaaaa
Fractionaaaaaaaaaa
Fractionaaaaaaaaaa
Login to View More

Abstract

The present invention is directed to methods of preparing linear polymers such as polyalkylene oxides containing a terminal amine in high purity. One preferred method includes reacting a polyalkylene oxide such as polyethylene glycol containing a terminal azide with a phosphine-based reducing agent such as triphenylphosphine or an alkali metal borohydride reducing agent such as sodium borohydride in a solvent to reflux. The resultant polymer-amines are of sufficient purity so that expensive and time consuming purification steps required for pharmaceutical grade polymers are avoided.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS [0001] This application is a continuation-in-part of U.S. patent application Ser. No. 11 / 212,901, filed Aug. 26, 2005, the contents of which are incorporated herein by reference.FIELD OF THE INVENTION [0002] The present invention relates to methods of preparing activated polymers such as polyalkylene oxides. In particular, the invention relates to methods of preparing linear polymers containing a terminal amine in high purity. BACKGROUND OF THE INVENTION [0003] The conjugation of water-soluble polyalkylene oxides with therapeutic moieties such as proteins and polypeptides is known. See, for example, U.S. Pat. No. 4,179,337, the disclosure of which is hereby incorporated by reference. The '337 patent discloses that physiologically active polypeptides modified with PEG circulate for extended periods in vivo, and have reduced immunogenicity and antigenicity. [0004] To conjugate polyalkylene oxides, the hydroxyl end-groups of the polymer must firs...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): C08G79/02
CPCC08G65/33303A61K47/48215A61K47/60C08G79/02C08G79/08
Inventor ZHAO, HONGRUBIO, BELENXIA, JING
Owner ZHAO HONG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products