Dispersion and aqueous coating composition comprising the dispersion

a technology of dispersion and coating composition, applied in the direction of coatings, etc., can solve the problems of reducing coating film performance, durability and water resistance, affecting the performance of coating films, etc., and achieve excellent coating film performance and excellent coating film performan

Inactive Publication Date: 2010-07-22
KANSAI PAINT CO LTD
View PDF2 Cites 12 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0016]Since the acryl-modified cellulose ester derivative (D) of the invention has the hydrophobic side-chain and hydrophilic side chain formed separately, the core sections and shell sections of the particles which are produced by dispersing the acryl-modified cellulose ester derivative (D) in the water are distinct, such that firm particles may be expected to be formed and long-term storage stability can be ensured to a degree far beyond that obtained when a hydrophilic side chain is simply introduced into a cellulose ester derivative.
[0017]Cellulose derivatives such as cellulose acetate butyrate are widely used as rheology controlling agents i

Problems solved by technology

Cellulose derivatives are useful starting materials in this sense, but their use in aqueous systems is problematic, particularly from the standpoint of storage stability.
Emulsifiers are generally used for dispersing the cellulose derivatives in water, but the use of emul

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0076]In a four-necked glass flask equipped with a thermometer, stirrer, reflux condenser, water separator and nitrogen inlet there was placed 50 parts of ethyleneglycol monobutyl ether, and the mixture was heated to 50° C. under a nitrogen stream while stirring. After a temperature of 50° C. was reached, 70.0 parts of CAB-551-0.01 (cellulose acetate butyrate by Eastman Chemical Products Company) was added, the mixture was heated to 120° C., and a mixture of 9.2 parts methyl methacrylate, 2.2 parts n-butyl acrylate, 4.6 parts 2-hydroxyethyl methacrylate, 4.0 parts acrylic acid and 1.00 part benzoyl peroxide was added dropwise over a period of 1 hour while maintaining the same temperature, and upon completion of the dropwise addition the mixture was kept at a temperature of 120° C. for 1 hour.

[0077]Next, a mixture of 4.6 parts methyl methacrylate, 3.1 parts n-butyl acrylate, 2.3 parts 2-hydroxyethyl methacrylate and 0.50 part benzoyl peroxide was added dropwise into the flask over a ...

examples 2 and 4-7

[0079]Dispersions of acryl-modified cellulose ester derivative were obtained in the same manner as Example 1, except that the starting materials and their amounts used in Example 1 were changed as shown in Table 1.

example 3

[0080]In a four-necked glass flask equipped with a thermometer, stirrer, reflux condenser, water separator and nitrogen inlet there was placed 140 parts of toluene, and the mixture was heated to 50° C. under a nitrogen stream while stirring. After a temperature of 50° C. was reached, 70.0 parts of CAB-551-0.01 was added, the temperature was increased to nearly 110° C. while stirring, and then toluene was passed through a water separator for water separation for approximately 30 minutes under reflux. After water separation, 0.10 part of 2-isocyanatoethyl acrylate and a trace amount (approximately 0.0004 part) of dibutyltin dilaurate were added while maintaining a temperature of 105° C. for approximately 2 hours of reaction, to obtain a radical-polymerizable unsaturated group-containing cellulose ester derivative.

[0081]The radical-polymerizable unsaturated group content in the radical-polymerizable unsaturated group-containing cellulose ester derivative was 0.010 mmol / g.

[0082]After th...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Percent by massaaaaaaaaaa
Percent by massaaaaaaaaaa
Percent by massaaaaaaaaaa
Login to view more

Abstract

The present invention relates to a dispersion comprising an acryl-modified cellulose ester derivative (D) dispersed in an aqueous medium, wherein a hydrophobic acrylic resin (B) and a hydrophilic acrylic resin (C) are grafted onto a cellulose ester derivative (A) in the acryl-modified cellulose ester derivative (D). The dispersion has excellent long-term storage stability, and aqueous coating compositions comprising the dispersion can form coating films with excellent coating workability, solvent resistance, chemical resistance, water resistance, and excellent curability.

Description

BACKGROUND OF THE INVENTION[0001]1. Field of the Invention[0002]The present invention relates to a dispersion with excellent storage stability that employs a cellulose derivative as a plant-derived starting material, and specifically it relates to an aqueous coating composition with excellent curability obtained using the dispersion, that can form coating films with excellent coating workability, solvent resistance, chemical resistance and water resistance.[0003]2. Description of the Related Art[0004]Cellulose derivatives such as cellulose acetate butyrate are widely used as rheology controlling agents in the field of coating compositions.[0005]Acrylic resins are also grafted onto cellulose derivatives, as disclosed in Japanese Unexamined Patent Publication SHO No. 56-163159, for use not only as rheology controlling agents but also for use of the cellulose derivatives as base resins, because of their excellent coating film performance including water resistance and solvent resistanc...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): C08L97/02
CPCC08F251/02C08F285/00C08F290/10C09D151/02C08F220/00
Inventor KAWAMURA, CHIKARAHAN, KISHEONG
Owner KANSAI PAINT CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products