Loc device for detecting hybridization of target nucleic acid sequences with electrochemiluminescent resonant energy transfer, primer-linked, stem-and-loop probes

Inactive Publication Date: 2011-12-22
GENEASYS
View PDF9 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0094]The easily usable, mass-producible, inexpensive, compact, and light LOC device accepts a biological sample, amplifies the nucleic acid targets in the sample, identifies the sample's nucleic acid sequences via hybridization with electrochemiluminescence resonance energy transfer primer-linked stem-and-loop probes using its integral image sensor, and provides the results electronically at its output pads, with the primer-linked stem-and-loop probes providing for a large number of optimal parallel amplification reactions

Problems solved by technology

Insufficient stringency can result in a high degree of nonspecific binding.
Excessive stringency can lead to a failure of appropriate binding, which results in diminished sensitivity.
Despite the advantages that molecular diagnostic tests offer, the growth of this type of testing in the clinical laboratory has been slower than expected and remains a minor part of the practice of laboratory medicine.
This is primarily due to the complexity and costs associated with nucleic acid testing compared with tests based

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Loc device for detecting hybridization of target nucleic acid sequences with electrochemiluminescent resonant energy transfer, primer-linked, stem-and-loop probes
  • Loc device for detecting hybridization of target nucleic acid sequences with electrochemiluminescent resonant energy transfer, primer-linked, stem-and-loop probes
  • Loc device for detecting hybridization of target nucleic acid sequences with electrochemiluminescent resonant energy transfer, primer-linked, stem-and-loop probes

Examples

Experimental program
Comparison scheme
Effect test

Example

Overview

[0236]This overview identifies the main components of a molecular diagnostic system that incorporates embodiments of the present invention. Comprehensive details of the system architecture and operation are set out later in the specification.

[0237]Referring to FIGS. 1, 2, 3, 104 and 105, the system has the following top level components:

[0238]Test modules 10 and 11 are the size of a typical USB memory key and very cheap to produce. Test modules 10 and 11 each contain a microfluidic device, typically in the form of a lab-on-a-chip (LOC) device 30 preloaded with reagents and typically more than 1000 probes for the molecular diagnostic assay (see FIGS. 1 and 104). Test module 10 schematically shown in FIG. 1 uses a fluorescence-based detection technique to identify target molecules, while test module 11 in FIG. 104 uses an electrochemiluminescence-based detection technique. The LOC device 30 has an integrated photosensor 44 for fluorescence or electrochemiluminescence detection...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Lengthaaaaaaaaaa
Lengthaaaaaaaaaa
Timeaaaaaaaaaa
Login to view more

Abstract

A lab-on-a-chip (LOC) device for detecting hybridization of target nucleic acid sequences, the LOC device having electrochemiluminescent (ECL), resonant energy transfer, primer-linked, stem-and-loop probes for hybridization with the target nucleic acid sequences to form probe-target hybrids, each of the probes having a loop portion containing the target nucleic acid sequence, a primer for extension along the target nucleic acid sequence to form a nucleic acid sequence complementary to the target, an ECL luminophore for emitting photons when in an excited state, and a functional moiety for quenching photon emission from the ECL luminophore by resonant energy transfer, and, electrodes for receiving an electrical pulse to excite the ECL luminophores, wherein during use, forming the complementary nucleic acid sequence causes the loop portion to open such the target nucleic acid sequence therein hybridizes to the complementary nucleic acid sequence and the ECL luminophore is moved away from the functional moiety.

Description

FIELD OF THE INVENTION[0001]The present invention relates to diagnostic devices that use microsystems technologies (MST). In particular, the invention relates to microfluidic and biochemical processing and analysis for molecular diagnostics.CO-PENDING APPLICATIONS[0002]The following applications have been filed by the Applicant which relate to the present application:GBS001USGBS002USGBS003USGBS005USGBS006USGSR001USGSR002USGAS001USGAS002USGAS003USGAS004USGAS006USGAS007USGAS008USGAS009USGAS010USGAS012USGAS013USGAS014USGAS015USGAS016USGAS017USGAS018USGAS019USGAS020USGAS021USGAS022USGAS023USGAS024USGAS025USGAS026USGAS027USGAS028USGAS030USGAS031USGAS032USGAS033USGAS034USGAS035USGAS036USGAS037USGAS038USGAS039USGAS040USGAS041USGAS042USGAS043USGAS044USGAS045USGAS046USGAS047USGAS048USGAS049USGAS050USGAS054USGAS055USGAS056USGAS057USGAS058USGAS059USGAS060USGAS061USGAS062USGAS063USGAS065USGAS066USGAS067USGAS068USGAS069USGAS070USGAS080USGAS081USGAS082USGAS083USGAS084USGAS085USGAS086USGAS087USGAS...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): C12M1/34C40B40/06G01N21/76
CPCB01L3/5027Y10T436/25B01L3/502738B01L7/52B01L2200/10B01L2300/023B01L2300/024B01L2300/0636B01L2300/0654B01L2300/0883B01L2300/10B01L2300/1827B01L2400/0406B01L2400/0633B01L2400/0677B01L2400/0688F16K99/003F16K99/0036G01N27/223C12Q1/68Y10T436/107497Y10T436/173845Y10T436/143333Y10T436/11Y10T436/145555Y10T436/203332Y10T436/25375B01L3/502707Y10T137/0352Y10T137/0391Y10T137/1044Y10T137/206Y10T137/2076Y10T137/2202Y02A90/10
Inventor AZIMI, MEHDISILVERBROOK, KIAMOINI, ALIREZA
Owner GENEASYS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products