A kind of sulfur-doped algae-iron composite material and its preparation method and application
A technology of composite materials and sulfur doping, applied in chemical instruments and methods, other chemical processes, alkali metal compounds, etc., to achieve excellent performance, stable properties, and low cost
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Examples
Embodiment 1
[0041] Preparation of sulfur-doped algae-iron composites:
[0042] 1) Add 0.1% (mass ratio) sodium lignosulfonate and 0.01% (mass ratio) ferric chloride to the green tide Enteromorpha salvaged from the No. 1 bathing beach in Qingdao and directly put it into the hydrothermal reaction kettle, Rapid hydrothermal reaction at 180°C for 24 hours, followed by filtration and drying to obtain seaweed-based biochar.
[0043] 2) Add the algae-based biochar obtained above into the deoxygenated ferrous chloride solution according to the dosage of 2wt%, control the mass ratio of iron to carbon to 1:1, and mix thoroughly for 2 hours under nitrogen atmosphere, slowly drop by drop Add 2 times the sodium borohydride solution containing sodium dithionite in the volume of ferrous solution, the molar concentration ratio of sodium borohydride and ferrous chloride in the mixed reaction system is 3:1, the molar ratio of ferrous chloride and sodium dithionite The concentration ratio is 10:1. After t...
Embodiment 2
[0046] Preparation of sulfur-doped algae-iron composites:
[0047] 1) Add 0.5% (mass ratio) calcium lignosulfonate and 0.05% (mass ratio) ferric chloride to the copper algae salvaged from the coastal waters of Weihai, put it into a hydrothermal reaction kettle, and heat it rapidly at 200°C After reacting for 12 hours, seaweed-based biochar was obtained after filtration and drying.
[0048]2) According to the mass ratio of 0.5%, the algae-based biochar obtained above is added to the deoxygenated ferrous chloride solution, and the iron-carbon mass ratio is controlled to be 10:1. After thorough mixing for 4 hours under nitrogen atmosphere, 2 volumes of potassium borohydride solution containing sodium dithionite was slowly added dropwise. The molar concentration ratio of potassium borohydride and ferrous iron in the mixed reaction system is 4:1, and the molar concentration ratio of ferrous and sodium dithionite is 20:1. After the dropwise addition, continue to stir and mix thoro...
Embodiment 3
[0052] 1) Add 1% (mass ratio) of magnesium lignosulfonate and 0.1% (mass ratio) of ferric sulfate to the fresh biomass of freshwater cultured chlorella, and then put it directly into the hydrothermal reaction kettle, and perform a rapid hydrothermal reaction at 210°C for 1 hours, the algae-based biochar was obtained after filtration and drying.
[0053] 2) According to the mass ratio of 5%, the algae-based biochar obtained above is added to the deoxygenated ferrous sulfate solution, and the mass ratio of iron to carbon is controlled to be 0.1:1. After thorough mixing under nitrogen atmosphere for 1 hour, 2 volumes of sodium borohydride solution containing sodium sulfide was slowly added dropwise. The molar concentration ratio of sodium borohydride and ferrous chloride in the mixed reaction system is 2:1, and the molar concentration ratio of ferrous and sodium sulfide is 100:1. After the dropwise addition, continue to stir and fully mix for 100 min, rinse with deoxygenated eth...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com