Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1508 results about "Molar concentration" patented technology

Molar concentration (also called molarity, amount concentration or substance concentration) is a measure of the concentration of a chemical species, in particular of a solute in a solution, in terms of amount of substance per unit volume of solution. In chemistry, the most commonly used unit for molarity is the number of moles per litre, having the unit symbol mol/L. A solution with a concentration of 1 mol/L is said to be 1 molar, commonly designated as 1 M.

Quick and efficient synthesis method for silver nanowires

InactiveCN101934377AImprove production efficiencyReduce reaction preparation timeHigh concentrationSynthesis methods
The invention discloses a quick and efficient synthesis method for silver nanowires. The method comprises the following steps of: 1) introducing inert gas into a reactor, adding 2 volume parts of glycol into the reactor, and stirring, heating, condensing and refluxing the glycol; quickly adding 1 volume part of glycol solution of silver nitrate at molar concentration of between 0.1 and 0.5m into the reactor; slowly dropwise adding 1 to 2 volume parts of PVP at molar concentration of between 0.15 and 0.75m and 4 to 32 mu m of glycol solution of MnCl2 at the same time; and reacting and cooling the mixture to the room temperature to obtain reaction mother liquor of the silver nanowires; and 2) transferring the reaction mother liquor of the silver nanowires into a centrifugal tube; adding acetone into the centrifugal tube and performing centrifugal separation to remove supernatant and retain precipitate; adding de-ionized water or ethanol into the centrifugal tube and performing centrifugal separation to remove the supernatant and retain precipitate, and repeating the operation for 1 to 3 times; and extracting and dispersing the precipitate with ethanol to obtain the silver nanowires. The method shortens the reaction time and also has high selectivity for the synthesis of the silver nanowires under conditions of high concentration.
Owner:ZHEJIANG UNIV

Novel vanadium halide redox flow battery

InactiveUS20060183016A1Avoid excessive bromine generationStabilise the bromine producedCharging stationsCell electrodesRedoxPhysical chemistry
A prior to charge vanadium halide redox cell, a vanadium halide redox cell which is at a state of charge selected from the group consisting of a zero state of charge and a near zero state of charge and vanadium halide redox cell which are fully charged and partially charged are described. The prior to charge vanadium halide redox cell comprises a positive half cell containing a positive half cell solution comprising a halide electrolyte, vanadium (III) halide and vanadium (IV) halide, a negative half cell containing a negative half cell solution comprising a halide electrolyte, vanadium (III) halide and vanadium (N) halide wherein the amounts of vanadium (III) halide, vanadium (IV) halide and halide ions in the positive and negative half cell solutions are such that in a first charging step comprising charging the prior to charge vanadium halide redox cell, a vanadium halide redox cell having a state of charge selected from the group consisting of a zero state of charge and a near zero state of charge comprising predominantly vanadium (N) halide in the positive half cell solution and predominantly V(III) halide in the negative half cell solution can be prepared. The vanadium halide redox cell which is at a state of charge selected from the group consisting of a zero state of charge and a near zero state of charge comprises a positive half cell containing a positive half cell solution comprising a halide electrolyte and a vanadium halide which is predominantly vanadium (N) halide, a negative half cell containing a negative half cell solution comprising a halide electrolyte and a vanadium halide which is predominantly vanadium (III) halide wherein the amount of vanadium (N) halide in the positive half cell solution and the amount of vanadium (III) halide in the negative half cell solution are such that the vanadium halide redox cell is at a state of charge selected from the group consisting of a zero state of charge and a near zero state of charge. The vanadium halide redox cell which is fully charged comprises a positive half cell containing a positive half cell solution comprising a halide electrolyte, a polyhalide complex, vanadium (IV) halide and vanadium (V) halide, a negative half cell containing a negative half cell solution comprising a halide electrolyte and vanadium (II) halide wherein the molar concentration of vanadium (V) and polyhalide complex:molar concentration of vanadium (II) halide is about stoichiometrically balanced. The vanadium halide redox cell which is partially charged comprises a positive half cell containing a positive half cell solution comprising a halide electrolyte, a polyhalide complex, vanadium (IV) halide and vanadium (V) halide, a negative half cell containing a negative half cell solution comprising a halide electrolyte, vanadium (II) halide and vanadium (III) halide wherein the number of moles of moles of polyhalide complex and vanadium (V): number of moles of vanadium (II) halide is about stoichiometrically balanced.
Owner:NEWSOUTH INNOVATIONS PTY LTD

Multifunctional nuclear shell structure drug carrier material and preparation method thereof

The invention provides a multifunctional nuclear shell structure drug carrier material and a preparation method thereof; the preparation method comprises the following steps: step one, adopting a solvent-thermal method for preparing monodispersed ferroferric oxide magnetic nanoparticles with grain diameter of about 60nm as ferromagnetic nuclear material of the nuclear shell structure; step two, adopting a sol-gel method for cladding an imporous silicon dioxide layer and a meso-porous layer outside ferromagnetic nucleus in sequence; step three, adopting the sol-gel method for loading a layer ofup-conversion fluorescent material NaYF4: Yb, Er on the material obtained in the step two, wherein the molar concentration of Yb occupies 17% of Y concentration, and the molar concentration of Er occupies 3% of Y concentration. In the invention, an inertia SiO2 layer is designed between the magnetic nucleus and post-functionalized rare earth luminescent material for separating magnetic material from a rare earth luminescent layer so as to prevent fluorescent quenching; up-conversion fluorescent powder with higher fluorescent efficiency is used as fluorescent material; and the sol-gel method with mild reaction condition and uniform dispersion is adopted for forming the nuclear shell structure.
Owner:如皋市生产力促进中心

Control method of automobile air suspension

The invention discloses a control method for a vehicle air suspension; the invention takes the electric control device of a hardware part as the core and is configured with components such as various external sensors, an air spring, an air valve, and an adjustable shock absorber, and the like; the software part comprises signal detection, data processing and secondary calculation, a control method and control output; and firstly different working models are judged by calculating the variance of the input vehicle body height and the vehicle speed; open-loop control and a neural network are used for realizing online self-correction function; the electric control device controls the implementation of the air valve according to the air charge and discharge time which is obtained by the neural network, and then the air molar concentration and the deviation quantity in the spring are obtained by calculation; and finally a detail control signal is obtained. The control method causes the vehicles to be controlled flexibly under different pavement conditions, has appropriate flexibility and damping performance under various road conditions, effectively solves the conflicts when parameters are matched to be suitable for various road conditions, and improves the handling performance, the safety, the comfort and the off-road performance of the vehicles.
Owner:JIANGSU UNIV +1

Nonaqueous electrolyte for high-voltage lithium ion battery

The invention discloses nonaqueous electrolyte for a high-voltage lithium ion battery. The nonaqueous electrolyte consists of a solvent, an inorganic lithium salt, a fluoro-ester additive, a sultone additive, an organic tri-nitrile additive, a bi(polyfluoroalkoxy sulfonyl) imine lithium salt and a lithium battery electrolyte additive, wherein the addition amount of the solvent is 100 weight parts; the addition amount of the fluoro-carbonate additive is 0.2-10 weight parts; the addition amount of the nitrile additive is 0.2-10 weight parts; the addition amount of the bi(polyfluoroalkoxy sulfonyl) imine lithium salt is 0.2-10 weight parts; the addition amount of the common lithium battery electrolyte additive is 0-10 weight parts; the solvent refers to cyclic carbonate and/or chain carbonate; and the molar concentration of the inorganic lithium salt in the solvent is 0.8-1.5mol/L. According to combined use of the sultone additive, the fluoro-ester carbonate additive, the bi(polyfluoroalkoxy sulfonyl) imine lithium salt and the organic tri-nitrile additive, the oxidation resistance of the SEI film during primary formation of the electrolyte can be improved, and the normal-temperature and high-temperature cycle performance of the high-voltage electrolyte is obviously improved.
Owner:ZHUHAI SMOOTHWAY ELECTRONICS MATERIALS

Electrolyte solution of fluorine-containing lithium sulfonimide salt and application thereof

The invention provides an electrolyte solution of fluorine-containing lithium sulfonimide salt and application of the electrolyte solution. The electrolyte solution consists of the following four components: fluorine-containing lithium sulfonimide, other lithium salts, carbonate and/or ether organic solvent and other functional addictives, wherein the molar concentration of fluorine-containing lithium sulfonimide salt is 0.001-2 mole/L in the electrolyte solution, the molar concentration of other lithium salts is 0-2 mole/L in the electrolyte solution, and the molar concentration of other functional addictives is 0-0.5 mole/L; and the fluorine-containing lithium sulfonimide is an ion-type compound, wherein the cation is lithium ion. The fluorine-containing lithium sulfonimide is contained in the electrolyte solution provided by the invention, thus the low temperature property of the electrolyte solution is improved greatly; and after the electrolyte solution is applied to a lithium battery, the capacity percentage of the lithium battery is improved at the high temperature more than 50 DEG C or at the low temperature below minus 20 DEG C, which is beneficial to improving the cycle life and the storage life of the lithium battery.
Owner:ZHANGJIAGANG GUOTAI HUARONG NEW CHEM MATERIALS CO LTD

Resource recycling method of waste battery cathode materials

The invention relates to a resource recycling method of waste battery cathode materials. The resource recycling method comprises the following steps: performing high-temperature calcinating to the waste battery cathode materials so as to separate active powder in the cathode materials from aluminum foil; dissolving the obtained active powder into acid solution, and then filtering to obtain filtrate; determining the concentration of metal ions in the filtrate, and correspondingly supplementing nickel and/or cobalt and/or manganese ions into the solution, so that the molar concentration ratio of nickel, cobalt and manganese ions is 1:1:1; adding sodium hydroxide into the prepared nickel, cobalt and manganese mixture solution, and heating to lead the nickel, cobalt and manganese ions to be co-precipitated, then filtering the precipitate and washing and drying to obtain a nickel-cobalt-manganese precursor; adding sodium carbonate into the filtrate obtained in the step IV, and reacting to obtain lithium carbonate precipitate, filtering, washing and drying the lithium carbonate precipitate, to obtain lithium carbonate powder; and mixing the nickel-cobalt-manganese precursor with the lithium carbonate powder, and calcinating to obtain the lithium nickel cobalt manganese cathode materials. A ternary cathode material is prepared by resource recycling ofvarious battery materials, and batteries produced from the ternary cathode material are lower in cost, higher in electric capacity and better in performance compared with single cobalt-lithium batteries, manganese-lithium batteries and nickel-lithium batteries.
Owner:王剑

Planar laser induced fluorescence (PLIF) imaging device and method for acquiring hydroxyl (OH) concentration spatial distribution through device

InactiveCN103344619ASimple processHigh precisionFluorescence/phosphorescencePlanar laser-induced fluorescenceFluorescence
The invention discloses a planar laser induced fluorescence (PLIF) imaging device and a method for acquiring hydroxyl (OH) concentration spatial distribution through the device, and relates to a method for determining the OH-radical concentration spatial distribution. According to the device and the method, the problem that the average concentration of components on a certain line can be only determined and the spatial distribution of the concentration cannot be determined through a PLIF imaging technology is solved. A laser generates a laser signal, the laser signal is subjected to frequency multiplication through a frequency multiplier, and a sheet pulse signal is obtained through a sheet beam reshaping system; a target flame device excites an OH-radical fluorescence signal; a fluorescence signal detection device detects the OH-radical fluorescence signal to obtain an OH-radical fluorescence image; n to-be-measured points and n auxiliary points are selected from the OH-radical fluorescence image, the gray value and light intensity of the OH-radical fluorescence image of each to-be-measured point and each auxiliary point are calculated; the average molar concentration of each to-be-measured point is obtained according to a Lambert-Bill absorption law so as to obtain the OH-radical concentration spatial distribution. The invention is applied to the method for determining the OH-radical concentration spatial distribution.
Owner:HARBIN INST OF TECH

Energy storage battery with non-aqueous electrolyte solution of lithium perfluoro-alkoxy (-phenoxy) sulfonylimide

The invention provides an energy storage battery with a non-aqueous electrolyte solution of lithium perfluoro-alkoxy (-phenoxy) sulfonylimide. A negative pole material based on a lithium titanate parent structure and a positive pole material based on a lithium manganate parent structure are adopted in the lithium perfluoro-alkoxy (-phenoxy) sulfonylimide of the battery, the electrolyte solution comprises the lithium perfluoro-alkoxy (-phenoxy) sulfonylimide, other lithium salts, a carbonic ester type and/or ether type organic solvent and other functional additives, the molar concentration of the lithium perfluoro-alkoxy (-phenoxy) sulfonylimide in the electrolyte solution is 0.001-2 mol/L, the molar concentration of the other lithium salts in the electrolyte solution is 0-2 mol/L, and the molar concentration of the other functional additives in the electrolyte solution is 0-0.5 mol/L. The lithium perfluoro-alkoxy (-phenoxy) sulfonylimide in the battery can greatly improve the high/low-temperature performance and the film forming performance of the electrolyte solution, after the lithium perfluoro-alkoxy (-phenoxy) sulfonylimide is applied to the lithium titanate/manganese lithium energy storage battery, the percentage by volume of the battery is improved under high-temperature and low-temperature situations, and the lithium perfluoro-alkoxy (-phenoxy) sulfonylimide is further conductive to circulating a lithium cell and prolonging storage life.
Owner:ZHANGJIAGANG GUOTAI HUARONG NEW CHEM MATERIALS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products