Methods and compositions for directed microwave chemistry

Inactive Publication Date: 2004-10-21
MIRARI BIOSCI
View PDF49 Cites 70 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

0199] It is a distinct advantage of the present invention that surface microwave heating can be used both for preparative reactions and, in the same location, for subsequent analytical reactions. Described below are innovative ways in which preparative and analytical microwave reactions can be used sequentially.
0200] Preparative Applications: Targeted Microwave PCR
0201] It is shown here for the first time that directed microwave heating can dramatically accelerate nucleic acid hybridization. Polymerase

Problems solved by technology

However, in these cases the microwaves are not directed to heat a surface, but used to heat the bulk solution.
Microwave irradiation causes a te

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Methods and compositions for directed microwave chemistry
  • Methods and compositions for directed microwave chemistry
  • Methods and compositions for directed microwave chemistry

Examples

Experimental program
Comparison scheme
Effect test

Example

EXAMPLE 2

[0230] Microwave Detection in an Immunoassay Using Isoluminol-Labeled Antibody

Example

[0231] Example 1 showed that small amounts of (iso)luminol (2, FIG. 3)could be detected using microwave directed chemiluminescence. An experiment was carried out to see if microwave directed chemiluminescence could be used to detect an analyte in an immunoassay. Another purpose of the experiment was to see if a direct-labeled (isoluminol) antibody could be used.

[0232] In the experiment, mouse IgG (Sigma I-5381) was used as the analyte. Mouse IgG (1 mg / mL) was spotted (3-5 nL) on a chip (FAST Slide) in S&S Array Buffer. Analyte was detected using streptavidin-isoluminol (3.5 labels per streptavidin, Sigma S-8532) that was bound to the recognition antibody, which was a biotin goat anti-mouse antibody (Sigma B-7151). Chemiluminescence of chips (BSR-1 dielectric undercoated FAST Slides) was measured on X-ray film following spraying with reagent (see Example 1) at room temperature or upon microwaving.

[0233] Detection was performed on BSR-1 / SS6M or MCS / SS6M dielectric (Emerson & Cuming) u...

Example

EXAMPLE 3

[0237] Microwave Detection of Chemiluminescent Enzyme Substrates Having discovered that (iso)luminol can be used in microwave chemiluminescence analyses, experiments were conducted to determine if other chemiluminescent chemistries were also amenable to microwave triggering. Chemiluminescent compounds can often be used as direct labels (attached to proteins or nucleic acids) or enzyme substrates. Streptavidin-isoluminol is an example of the former and luminol (an HRP substrate) is an example of the latter. Enzyme substrate chemiluminescent compounds have the advantage of catalytic amplification, but they also have the drawback of light emission being a sustained low glow. Chemiluminescent enzyme substrates usually follow the pathway shown below;

E+S.fwdarw.E+P*.fwdarw.E+P+hv

[0238] where E is enzyme, S is substrate, P* is a transient product, P is final product, and hv is light emission. Metastable product P* spontaneously breaks down to form P and light. Thus, if enzyme cata...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Wavelengthaaaaaaaaaa
Wavelengthaaaaaaaaaa
Responsivityaaaaaaaaaa
Login to view more

Abstract

The present invention concerns a novel means by which chemical preparations can be made. Reactions can be accelerated on special cartridges using microwave energy. The chips contain materials that efficiently absorb microwave energy causing chemical reaction rate increases. The invention is important in many chemical transformations including those used in protein chemistry, in nucleic acid chemistry, in analytical chemistry, and in the polymerase chain reaction.

Description

[0001] This application is a continuation-in-part of U.S. patent application Ser. No. 10 / 234,092 (filed on Sep. 5, 2002), which application is a continuation in part of U.S. patent application Ser. No. 09 / 968,517 (filed on Oct. 2, 2001), which application claims priority to U.S. patent application Ser. No. 60 / 237192 (filed on Oct. 3, 2000, now abandoned), all of which applications are herein incorporated by reference in their entirety.[0002] The present invention relates to the field of microwave chemistry. It also relates to the field of biotechnology, specifically microplate-and array chip-based preparative and analytical chemistry.[0003] Until now, no one has performed chemical transformations as disclosed herein. Devices are used that emit radiofrequency / microwave energy. The energy is directed to a target object, for example, a microarray chip or a microtiter plate that contains one or more material(s) that absorb(s) microwave energy. The microwave-generated heat energy acceler...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): C12N11/00C12N13/00G01N33/543
CPCC12N11/00C12N13/00G01N33/5436G01N33/54393
Inventor MARTIN, MARK T.
Owner MIRARI BIOSCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products