Novel biodegradable elastomeric scaffold for tissue engineering and light scattering fingerprinting methods for testing the same

Inactive Publication Date: 2005-03-24
NORTHWESTERN UNIV
View PDF5 Cites 85 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

Preferably, the polymer also is biocompatible.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Novel biodegradable elastomeric scaffold for tissue engineering and light scattering fingerprinting methods for testing the same
  • Novel biodegradable elastomeric scaffold for tissue engineering and light scattering fingerprinting methods for testing the same
  • Novel biodegradable elastomeric scaffold for tissue engineering and light scattering fingerprinting methods for testing the same

Examples

Experimental program
Comparison scheme
Effect test

example 1

Preparation of Poly(1,8-Octanediol-co-citric acid) (POC)

In a typical experiment, 19.212 g citric acid and 14.623 g Octanediol were added to a 250 mL three-neck round-bottom flask, fitted with an inlet adapter and an outlet adapter. The mixture was melted within 15 min by stirring at 160-165° C. in silicon oil bath, and then the temperature of the system was lowered to 140° C. The mixture was stirred for another 1 hr at 140° C. to get the pre-polymer. Nitrogen was vented throughout the above procedures. The pre-polymer was post-polymerized at 60° C., 80° C. or 120° C. with and without vacuum for predetermined time (from one day to 3 weeks depending on the temperature, with the lower temperatures requiring longer times) to achieve the Poly(1,8-octanediol-co-citric acid). Nitrogen was introduced into the reaction system before the polymer was taken out from reaction system.

Porous scaffolds of POC (tubular and flat sheets) were prepared via a salt leaching technique. Briefly, sodium...

example 2

Preparation of Porous Scaffolds of POC

Porous scaffolds of POC (tubular and flat sheets) were prepared via a salt leaching technique as follows: POC pre-polymer was dissolved into dioxane to form 25 wt % solution, and then the sieved salt (90-120 microns) was added into pre-polymer solution to serve as a porogen. The resulting slurry was cast into a poly(tetrafluoroethylene) (PTFE) mold (square and tubular shape). After solvent evaporation for 72 h, the mold was transferred into a vacuum oven for post-polymerization. The salt in the resulting composite was leached out by successive incubations in water (produced by Milli-Q water purification system every 12 h for a total 96 h. The resulting porous scaffold was air-dried for 24 hr and then vacuum dried for another 24 hrs. The resulting scaffold was stored in a dessicator under vacuum before use. Porous scaffolds are typically preferred when cells are expected to migrate through a 3-dimensional space in order to create a tissue slice...

example 3

Characterization of POC

The following Example provides details of methods and results of characterization of POC.

Methods

Fourier transform infrared (FTIR) spectroscopy measurements. Infrared spectra were recorded on a Biorad FTS40 Fourier transform infrared spectrometer. Sample POC films with thickness of 12-16 microns were prepared from POC solid samples using a Microtome.

Mechanical Tests. Tensile tests were conducted according to ASTM D412a on an Instron 5544 mechanical tester equipped with 500 N load cell. The POC sample size was 26×4×1.5 mm.

Differential scanning calorimetry (DSC) measurements. Differential scanning calorimetry thermograms were recorded in the range of −80 to 600° C. on a DSC550 (Instrument Specialists Inc.) instrument at a heating rate of 10° C. / min.

In vitro degradation. The disk specimen (7 mm in diameter, about 1 to 1.5 mm thickness) was placed in a small container containing 10 ml phosphate buffer saline (pH 7.4). The container was incubated at 37° ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
temperatureaaaaaaaaaa
temperatureaaaaaaaaaa
temperatureaaaaaaaaaa
Login to view more

Abstract

The present invention is directed to a novel biocompatible polymer that may be used in tissue engineering. More specifically, the specification describes methods and compositions for making and using a citric acid copolymers.

Description

BACKGROUND 1. Field of the Invention The present invention is generally directed to a substrate used for tissue engineering. The substrate is a biodegradable elastomeric polymer. Methods and compositions for testing and using the same are disclosed. 2. Background of the Related Art The field of tissue engineering has slowly emerged within the past 2 decades, driven primarily by the large demand for replacement of diseased or damaged tissue [1]. Tissue engineering presents enormous challenges and opportunities for materials science from the perspective of both materials design and materials processing [2]. Successful tissue regeneration must go beyond reproducing shape and structure to restore biological and mechanical function and long-term integration with surround native tissues [3]. Tissue engineering requires the use of a three dimensional scaffold for cells to grow and differentiate properly. Generally, the ideal cell scaffold in tissue engineering should be biocompatible ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): A61K31/765C08G69/00C12N
CPCC08G63/06C08G63/16C08G63/40C08G63/685C08G63/66C08G63/914
Inventor AMEER, GUILLERMOYANG, JIANWEBB, ANTONIO
Owner NORTHWESTERN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products