Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Dna hybrids and environment cleaning system employing dna hybrids

a technology of dna hybrids and environment cleaning systems, applied in the field of dna hybrids, can solve the problems of inadequate dna carriers obtained by the above methods, and achieve the effect of high efficiency and sufficient function

Inactive Publication Date: 2006-03-09
CANON KK
View PDF8 Cites 16 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0008] The DNA carriers obtained by the above methods are not adequate as a DNA composite material applicable to selective absorption process or environmental clean-up with high efficiency, in view of the DNA-supporting strength and function expression. The present invention has been made to solve such problems in the prior arts, and an object of the present invention is to provide a DNA hybrid where DNA is effectively immobilized and exhibits sufficient function, a preparing method therefor, and further an environmental clean-up system using the DNA hybrid.

Problems solved by technology

The DNA carriers obtained by the above methods are not adequate as a DNA composite material applicable to selective absorption process or environmental clean-up with high efficiency, in view of the DNA-supporting strength and function expression.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0032] Five parts by mass of double-stranded DNA obtained from salmon testis (molecular weight: 6×106) was dissolved in 1000 parts by mass of ion exchange water over a day to obtain an aqueous solution of DNA.

[0033] To 70 parts by mass of 30% silica sol (NISSAN CHEMICAL INDUSTRIES, LTD., SNOWTEX CM), 20 parts by mass of 20% by mass alumina sol (NISSAN CHEMICAL INDUSTRIES, LTD., ALUMINA SOL 520) was added with stirring. The resultant sol mixture was combined with 100 parts by mass of the DNA solution, and stirred slowly for 10 minutes. Subsequently, the resultant DNA dispersion was dried for 24 hours at 50° C. to obtain DNA Hybrid 1 whose DNA content was about 2% by mass.

[0034] This DNA hybrid was subjected to an elution test. To 20 parts by mass of ion-exchanged water, 0.05 parts by mass of the DNA hybrid powder was added and settled in a sealed condition at room temperature for 48 hours. The absorbance (260 nm) of DNA in the supernatant liquid measured by a spectrophotometer (U-3...

example 2

[0036] To 70 parts by mass of 30% silica sol (NISSAN CHEMICAL INDUSTRIES, LTD., SNOWTEX CM), 40 parts by mass of 20% by mass alumina sol (NISSAN CHEMICAL INDUSTRIES, LTD., ALUMINA SOL 520) was added with stirring. The resultant sol mixture was combined with 100 parts by mass of the DNA solution prepared in Example 1, and stirred slowly for 10 minutes. Subsequently, the resultant DNA dispersion was dried for 24 hours at 50° C. to obtain DNA Hybrid 2 whose DNA content was about 1.7% by mass.

[0037] This DNA hybrid was subjected to an elution test. To 20 parts by mass of ion-exchanged water, 0.05 parts by mass of the DNA hybrid powder was added and settled in a sealed condition at room temperature for 48 hours. The absorbance (260 nm) of DNA in the supernatant liquid measured by a spectrophotometer (U-3310, Hitachi) was about 0.02. The DNA hybrid was proved to be holding 98 mass % or more of the DNA.

example 3

[0038] To 70 parts by mass of 30% silica sol (NISSAN CHEMICAL INDUSTRIES, LTD., SNOWTEX CM), 60 parts by mass of a titanium oxide sol (TAKI CHEMICAL CO., LTD., M-6, 6% by mass) was added with stirring. The resultant sol mixture was combined with 100 parts by mass of the DNA solution prepared in Example 1, and stirred slowly for 10 minutes. Subsequently, the resultant DNA dispersion was dried for 24 hours at 50° C. to obtain DNA Hybrid 3 whose DNA content was about 1% by mass.

[0039] This DNA hybrid was subjected to an elution test. To 20 parts by mass of ion-exchanged water, 0.1 parts by mass of the DNA hybrid powder was added and settled in a sealed condition at room temperature for 48 hours. The absorbance (260 nm) of DNA in the supernatant liquid measured by a spectrophotometer (U-3310, Hitachi) was about 0.05. The DNA hybrid was proved to be holding 95 mass % of the DNA.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
temperatureaaaaaaaaaa
temperatureaaaaaaaaaa
temperatureaaaaaaaaaa
Login to View More

Abstract

A DNA hybrid which comprises a porous oxide matrix and DNA immobilized thereon, and is useful for environmental clean-up, where the hybrid is prepared by removing a dispersion medium from a dispersion of colloidal oxide and DNA.

Description

TECHNICAL FIELD [0001] The present invention relates to a DNA hybrid. More particularly, the invention relates to a DNA hybrid where DNA is immobilized firmly in an oxide matrix, having water resistance, retaining selective recognition function of DNA and allowing intercalation into the double helix of DNA. It also relates to an environmental clean-up system using this DNA hybrid. BACKGROUND ART [0002] DNA (deoxyribonucleic acid) carrying genetic information in living organisms is one of the most important materials for life process. DNA has the capability of extremely precise molecular-recognition, because DNA forms a double-stranded structure between two complementary strands via base pairs between them. Based on this principle, genetic diagnosis that uses the DNA chip has been developed. Application to biosensors and molecular devices is also expected. Also since the DNA double helix allows selective intercalation of an aromatic compound having a planar chemical structure, it is ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): C12Q1/68C07H21/04C12M1/34C12M3/00B01J20/32C02F1/28C07H21/00
CPCC02F1/286B01J20/103C07H21/00C12Q1/6834B01J20/06B01J20/08B01J20/28061B01J20/3078B01J20/3204B01J20/3274B01J20/3293B01J20/3297B01J2220/42B01J2220/58C02F1/288
Inventor ZHANG, ZUYISAKAKIBARA, TEIGOKOTANI, YOSHINORINISHI, NORIO
Owner CANON KK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products