Nucleic acid amplification in the presence of modified randomers

a technology of randomers and nucleic acids, applied in the field of template dependent polymerase catalyzed primer extension reactions, can solve the problems of inability to control the reproducibility and quality of chemically modified enzyme preparations, time-consuming and inconvenient methods, and unspecific amplification products, etc., to eliminate the inhibition of polymerase, short activation time, and convenient us

Inactive Publication Date: 2009-10-29
ROCHE MOLECULAR SYST INC
View PDF22 Cites 16 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0091]One major advantage of the present invention is the ease of use and the short activation time to eliminate the inhibition of the polymerase at low temperatures. Simply, a randomized 5-8 mer oligonucleotide, characterized in that said oligonucleotide comprises a modification with an organic hydrophobic moiety needs to be added to a PCR reaction set up. During PCR thermocycling the denaturation time prior to the first cycle which is usually required to separate double stranded DNA templates into single strands is sufficient to eliminate the interaction between the conjugated randomers and the PCR primers.
[0092]Furthermore, random hexamers can be synthesized according to standard phosphoramidate chemistry methods which are well established in the art. Moreover, also 5′ modifications can be introduced into the oligonucleotide using Phosphoramidate chemistry with a respectively modified terminal Phosphoramidate according to standard methods very easily. Thus the production costs for the inventive PCR additive are fairly low as compared to other hot start solutions.
[0093]In addition, the inventive methods, compositions and kits can be generically used for any kind of primer extension, reverse transcription or PCR amplification, irrespective of what specific target nucleic acid sequence shall be prepared, amplified, detected, or analyzed.BRIEF DESCRIPTION OF THE FIGURES
[0094]FIG. 1 Amplification of genomic DNA in the presence of Pyrene-capped hexamers according to

Problems solved by technology

A major problem with nucleic acid amplification and more especially with PCR is the generation of unspecific amplification products.
In many cases, this is due to an unspecific oligonucleotide priming and subsequent primer extension event prior to the actual thermocycling procedure itself, since thermostable DNA polymerases are also moderately active at ambient temperature.
Both methods, however are time consuming and inconvenient to perform.
Therefore, the reproducibility and quality of chemically modified enzyme preparations may vary and can hardly be controlled.
However, the N-terminal truncated cold sensitive mutant form requires low salt buffer conditions, has a lower processivity as compared to the wild type enzyme and thus can only be used for the amplification of short target nucleic acids.
Moreover, since the truncated form lacks 5′-3′ exonuclease activity, it can not be used for real time PCR experiments based on the TaqMan detection format.
However, it is not known, to which extent the excess of competitor DNA influences the yield of the nucleic acid amplification reaction.
Due to the selection process, however, all so far available Aptamers can only be used in combination with one particular species of DNA polymerase.
This leads to a substantial time consuming prolongation of the amplification as a whole, especially if protocols for rapid thermocycling are applied (WO 97 / 46706).
Yet, digestion of the unspecific primers dependent on the duration of the preincubation time may lead to a substantial and uncontrolled decrease in primer concentration, which in turn may affect the amplification reaction itself.
However, it is major drawback of the disclosed alternatives that for each PCR reaction, modified primers are required, which lead to increased requirements regarding increase the cost for each individual assay.
This association is disrupted when heating during PCR.
Yet, the inhibitor tends to reduce the obtainable product yield, when primers with lower annealing temperatures are used.
On the other hand, such a solution does not allow the preparation of mastermixes containing all reagents except primer and target nucleic acid which are necessary to perform a nucleic acid amplification reaction.
As a consequence, inter-assay data reproducibility and data comparisons are complicated.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Nucleic acid amplification in the presence of modified randomers
  • Nucleic acid amplification in the presence of modified randomers
  • Nucleic acid amplification in the presence of modified randomers

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0128]5′ Pyrene-capped hexamers were analyzed in DNA amplification. PCR reactions in the presence or absence of 100 μM Pyrene-capped hexamers were performed in 50 μl reactions containing 50 ng, 25 ng, 10 ng, 5 ng, 1 ng and 0 ng of human genomic DNA, 30 mM Tris-HCl, pH 8.6, 1.5 mM MgCl2, 50 mM KCl, 0.2 mM dNTP's each, 0.4 μM primers (SEQ ID NO: 1 ATT AGA GAA CCA TGT TAA CAC TAC CG and SEQ ID NO: 2 GAG GTG AAT GAC CAC TGT TTA TTT TC) and 2.5 units Taq DNA polymerase. The following cycle conditions were used: Initial denaturation for 4 min at 94° C. and 35 cycles with 20 seconds denaturation at 94° C., 30 seconds annealing at 62° C., 60 seconds elongation at 72° C. and a final elongation step of 7 min at 72° C. The amplification products were separated on an agarose gel and visualized by ethidium bromide staining.

[0129]The result depicted in FIG. 1 shows a clear improvement in amplification specificity in the presence of pyrene-capped hexamers.

example 2

[0130]5′ Pyrene-capped hexamers were analyzed in realtime PCR. PCR reactions in the presence or absence of Pyrene-capped hexamers were performed in 20 μl rections containing 30 ng, 3 ng or 0.3 ng of human genomic DNA, 50 mM Tris-HCl, pH 8.6, 0.2 mM CHAPS, 1 mM BigChap, 20 mM KCl, 3 mM MgCl2, 0.4 μM primers (SEQ ID NO: 3 GGA AGT ACA GCT CAG AGT TCT GC and SEQ ID NO: 4 GAA TCT CCA TTC ATT CTC AAA AGG ACT), 0.2 mM deoxynucleotides, and 2.5 units Taq DNA polymerase. PCR was performed in a LIGHTCYCLER 480 Instrument (Roche Diagnostics GmbH) with the following cycle conditions: Initial denaturation for 2 min at 95° C. and 45 cycles with 1 second denaturation at 95° C., 10 seconds annealing at 65° C. and 10 seconds elongation at 72° C. The amplification products were separated on agarose gel and visualized by ethidium bromide staining (FIG. 2). The result shows a clear improvement in amplification specificity by pyrene-capped hexamers.

example 3

[0131]5′ Pyrene-capped pentamers were analyzed in the same experimental setup as described in example 2. The final concentrations tested were 50 μM, 100 μM, 150 μM and 200 μM. A variety of PCR products were formed in the control reaction (absence of additive), whereas in the presence of increasing amounts of pyrene-capped pentamers the desired product was formed with increased yield. Specificity and sensitivity were significantly higher than in the control experiment without additives (not shown).

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
temperaturesaaaaaaaaaa
temperaturesaaaaaaaaaa
pHaaaaaaaaaa
Login to view more

Abstract

The present invention is directed to a composition comprising a DNA Polymerase which is preferably thermostable, Deoxynucleotides, at least one primer oligonucleotide or a pair of amplification primers, and randomized 5-8 mer oligonucleotide, characterized in that said oligonucleotide comprises a modification with an organic hydrophobic moiety Such a composition is specifically useful for performing hot start PCR.

Description

RELATED APPLICATIONS[0001]This application claims priority to EP 08005100.6 filed Mar. 19, 2008.FIELD OF THE INVENTION[0002]The present invention relates to the field of template dependent polymerase catalyzed primer extension reactions. In particular, the invention provides a new method for nucleic acid amplification by means of performing a polymerase chain reaction (PCR). More precisely, the present invention provides a new method for performing a hot start PCR characterized in that unspecific primer dimer amplification is avoided.BACKGROUND[0003]A major problem with nucleic acid amplification and more especially with PCR is the generation of unspecific amplification products. In many cases, this is due to an unspecific oligonucleotide priming and subsequent primer extension event prior to the actual thermocycling procedure itself, since thermostable DNA polymerases are also moderately active at ambient temperature. For example, amplification products due to eventually by chance ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): C12Q1/68C12N9/00C12P19/34
CPCC12Q1/6848C12Q1/686C12P19/34C12Q2525/179C12Q2525/101
Inventor HEINDL, DIETERANKENBAUER, WALTRAUDLAUE, FRANK
Owner ROCHE MOLECULAR SYST INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products