Engineered fuel feed stock

Inactive Publication Date: 2010-01-28
REPOWER IP LLC
View PDF94 Cites 100 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0069]In some embodiments, the size of the mixture of step b) or step d) is reduced to help homogenize the engineered fuel feed stock. In some embodiments, a size and shape is determined for a densified form of the mixture of step b) or the size-reduced mixtures of steps b) or d). In some embodiments, the mixture of step b) is densifie

Problems solved by technology

Sources of fossil fuels useful for heating, transportation, and the production of chemicals as well as petrochemicals are becoming increasingly more scarce and costly.
Additionally, due to the ever increasing costs of fossil fuels, transportation costs for moving engineered fuel feed stocks for production of energy and petrochemicals is rapidly escalating.
However, the brute force nature of the combustion of fuel causes significant amounts of pollutants to be generated in the gas produced.
Fine particle pollution from U.S. power plants cuts short the lives of over 30,000 people each year.
The primary disadvantage of updraft gasification is that the synthesis gas contains 10-20% tar by weight, requiring extensive syngas cleanup before engine, turbine or synthesis applications.
The disadvantages of downdraft gasification are that it requires feed drying to a low moisture content (<20%).
For coarse particles, the minimum bubbling velocity and channeling velocity are close or almost equal, but the channeling velocity may be quite different, due to the gas distribution problem.
One potential source for a large amount of feed stock for gasific

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Engineered fuel feed stock
  • Engineered fuel feed stock
  • Engineered fuel feed stock

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0230]

Test MethodASAIRDRYASTM1 #ParameterRECEIVEDDRIEDBASISD 3302, 5142Total Moisture,21.04——% wtD 5142Residual—7.04—Moisture, % wtD 5142Ash, % wt12.9115.2016.35D 5142Volatile, % wt58.8169.2474.49CalculationFixed Carbon,7.248.529.16% wtTotal100.00100.00100.00D 4239Sulfur %0.180.210.23D 5865HHVBtu / lb (Gross)108901282113792D 3176Hydrogen, % wt4.244.995.37D 3176Carbon, % wt33.8439.8442.86D 3176Nitrogen, % wt0.240.290.31Calculation% Oxygen by27.5532.4234.88difference1American Society for Testing and Materials

example 2

[0231]

Test MethodASAIRDRYASTM1 #ParameterRECEIVEDDRIEDBASISD 3302, 5142Total Moisture,13.26——% wtD 5142Residual—6.09—Moisture, % wtD 5142Ash, % wt14.3915.5816.59D 5142Volatile, % wt63.3368.5773.02CalculationFixed Carbon,9.029.7610.40% wtTotal100.00100.00100.00D 4239Sulfur %0.200.220.23D 5865HHV Btu / lb111651208812872(Gross)D 3176Hydrogen, % wt5.556.016.40D 3176Carbon, % wt41.6845.1248.05D 3176Nitrogen, % wt0.210.230.24Calculation% Oxygen by24.7126.7528.49difference1American Society for Testing and Materials

example 3

[0232]

Test MethodASAIRDRYASTM1 #ParameterRECEIVEDDRIEDBASISD 3302,Total Moisture, % wt15.06——5142D 5142Residual Moisture, % wt—4.16—D 5142Ash, % wt11.6713.1713.74D 5142Volatile, % wt64.6072.8976.05CalculationFixed Carbon, % wt8.679.7810.21Total100.00100.00100.00D 4239Sulfur %0.090.110.11D 5865HHV Btu / lb (Gross)618869827285D 3176Hydrogen, % wt4.935.565.80D 3176Carbon, % wt34.9039.3841.09D 3176Nitrogen, % wt0.070.080.08Calculation% Oxygen by difference33.2837.5539.18D4208Chlorine, % wt0.750.840.881American Society for Testing and Materials

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

Disclosed are novel engineered fuel feed stocks, feed stocks produced by the described processes, and methods of making the fuel feed stocks. Components derived from processed MSW waste streams can be used to make such feed stocks which are substantially free of glass, metals, grit and noncombustibles. These feed stocks are useful for a variety of purposes including as gasification and combustion fuels.

Description

CROSS REFERENCE TO RELATED APPLICATIONS[0001]This application claims the benefit of priority under 35 U.S.C. 119(e) to co-pending U.S. application No. 61 / 076,025, filed on Jun. 26, 2008, and entitled “ENGINEERED FUEL PELLET,” and U.S. application No. 61 / 076,020, filed Jun. 26, 2008, and entitled “ENGINEERED INERT FUEL PELLET,” the disclosures of which are hereby incorporated by reference in their entireties.FIELD OF THE INVENTION[0002]The present invention relates to alternative fuels. In particular, the invention relates to engineering engineered fuel feed stock suited for specific applications including as a fossil fuel substitute for combustion, as well as feed stock for gasification to produce high quality synthesis gas. Feed stock can be engineered to control air emission profiles upon combustion or gasification (such as dioxins, sulfur emitted, as well as others pollutants) as well as to avoid slagging. The feed stock described herein comprises at least one component of proces...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): C10L5/00
CPCC10J3/463C10J2300/0903C10J2300/0909C10J2300/0916C10J2300/0946Y02E50/30C10L5/363C10L5/366C10L5/46Y02E50/10C10L5/36C10L2200/0263C10L2200/0277C10L2200/0295C10L2200/0461C10L5/08C10L5/40C10L5/403C10L5/406C10L5/445C10L2200/0469C10L2250/04C10L2290/24C10L2290/28C10L2290/30Y02E20/18Y02P20/145C01B3/02C10J3/72C10J2300/0906C10J2300/092
Inventor BOHLIG, JAMES W.BAI, DINGRONG
Owner REPOWER IP LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products