Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Nanoparticles for protein drug delivery

a technology of nanoparticles and proteins, applied in the direction of granular delivery, dna/rna fragmentation, powder delivery, etc., can solve the problems of limited hydrophilic drug transport via paracellular pathway, nanoparticles are not ideal carriers of hydrophilic drugs, and the inability of hydrophilic drugs to easily diffuse across cells

Inactive Publication Date: 2012-10-11
NANOMEGA MEDICAL CORP
View PDF0 Cites 71 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0018]Evaluation of the prepared nanoparticles in enhancing intestinal paracellular transport was investigated in vitro in Caco-2 cell monolayers model. Some aspects of the present invention provide the nanoparticles with CS dominated on the surfaces to effectively reduce the transepithelial electrical resistance (TEER) of Caco-2 cell monolayers. The confocal laser scanning microscopy (CLSM) observations confirm that the nanoparticles or fragments thereof with CS dominating on the surface are able to open the tight junctions between Caco-2 cells and allows transport of the nanoparticles via the paracellular pathways.
[0020]In one embodiment, the surface of the nanoparticles comprises about equal quantity or moles of chitosan and a negatively charged substrate so the surface potential is about neutral or zero. In another embodiment, a substantial surface of the nanoparticles is characterized with a positive surface charge or negative surface charge. In one embodiment, substantially all of the negatively charged substrate conjugates with substantially all of the positively charged chitosan so to maintain a substantially zero-charge (neutral) nanoparticle. The conjugation of the nanoparticle components enhances API loading content for the current nanoparticle system. In one embodiment, at least one bioactive, a protein drug, or a third compound is loaded within the nanoparticle system.
[0044]Some aspects of the invention provide a pharmaceutical composition of nanoparticles for oral administration in a patient, the nanoparticles comprising positively charged chitosan, a negatively charged substrate, wherein the negatively charged substrate is at least partially or substantially totally neutralized with the positively charged chitosan, and at least one bioactive agent loaded within the nanoparticles. In one embodiment, the bioactive agent is a non-insulin exenatide, a non-insulin pramlintide, insulin, insulin analog, or combinations thereof. In one embodiment, the nanoparticles are formed via a simple and mild ionic-gelation method.
[0049]In one embodiment, the PGA of the nanoparticle delivery system is γ-PGA, α-PGA, derivatives of PGA or salts of PGA. In another embodiment, a surface of the nanoparticles of the nanoparticle delivery system is characterized with a positive surface charge or zero surface charge. In a further embodiment, the nanoparticles of the nanoparticle delivery system are formed via a simple and mild ionic-gelation method.

Problems solved by technology

This is because hydrophilic drugs cannot easily diffuse across the cells through the lipid-bilayer cell membranes.
The transport of hydrophilic molecules via the paracellular pathway is, however, severely restricted by the presence of tight junctions that are located at the luminal aspect of adjacent epithelial cells (Annu. Rev. Nutr. 1995; 15:35-55).
However, these nanoparticles are not ideal carriers for hydrophilic drugs because of their hydrophobic property.
The absorption of protein drugs following oral administration is challenging due to their high molecular weight, hydrophilicity, and susceptibility to enzymatic inactivation.
However, the tight junction forms a barrier that limits the paracellular diffusion of hydrophilic molecules.
Most commercially available CSs have a quite large molecular weight (MW) and need to be dissolved in an acetic acid solution at a pH value of approximately 4.0 or lower that is sometimes impractical.
However, Heppe et al. neither teaches a chitosan-shelled nanoparticle transport system, nor asserts substantial efficacy of chitosan-shelled nanoparticles permeating through blood-brain barriers.
However, none of the above prior art teach a pharmaceutical composition of novel nanoparticles in a size less than 400 nanometers for an animal subject, the nanoparticles comprising positively charged chitosan and a negatively charged substrate through the nanoparticle structure, wherein the negatively charged substrate is substantially neutralized with the positively charged chitosan to enhance loading of at least one bioactive agent that is loaded within the nanoparticles.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Nanoparticles for protein drug delivery
  • Nanoparticles for protein drug delivery
  • Nanoparticles for protein drug delivery

Examples

Experimental program
Comparison scheme
Effect test

example no.1

Example No. 1

Materials and Methods of Nanoparticles Preparation

[0083]CS (MW ˜2.8×105) with a degree of deacetylation of approximately 85% was acquired from Challenge Bioproducts Co. (Taichung, Taiwan). Acetic acid, cellulase (1.92 units / mg), fluorescein isothiocyanate (FITC), phosphate buffered saline (PBS), periodic acid, sodium acetate, formaldehyde, bismuth subnitrate, and Hanks balanced salt solution (HESS) were purchased from Sigma Chemical Co. (St. Louis, Mo.). Ethanol absolute anhydrous and potassium sodium tartrate were obtained from Merck (Darmstadt, Germany). Non-essential amino acid (NEAA) solution, fetal bovine serum (FBS), gentamicin and trypsin-EDTA were acquired from Gibco (Grand Island, N.Y.). Eagle's minimal essential medium (MEM) was purchased from Bio West (Nuaille, France). All other chemicals and reagents used were of analytical grade.

example no.2

Example No. 2

Depolymerization of CS by Enzymatic Hydrolysis

[0084]Regular CS was treated with enzyme (cellulase) to produce low-MW CS according to a method described by Qin et al. with some modifications (Food Chem. 2004; 84:107-115). A solution of CS (20 WI) was prepared by dissolving CS in 2% acetic acid. Care was taken to ensure total solubility of CS. Then, the CS solution was introduced into a vessel and adjusted to the desired pH 5.0 with 2N aqueous NaOH. Subsequently, cellulase (0.1 g) was added into the CS solution (100 ml) and continuously stirred at 37° C. for 12 hours. Afterward, the depolymerized CS was precipitated with aqueous NaOH at pH 7.0-7.2 and the precipitated CS was washed three times with deionized water. The resulting low-MW CS was lyophilized in a freeze dryer (Eyela Co. Ltd, Tokyo, Japan).

[0085]The average molecular weight of the depolymerized CS was determined by a gel permeation chromatography (GPC) system equipped with a series of PL aquagel-OH columns (on...

example no.3

Example No. 3

Production and Purification of γ-PGA

[0089]γ-PGA was produced by Bacillus licheniformis (ATCC 9945, Bioresources Collection and Research Center, Hsinchu, Taiwan) as per a method reported by Yoon et al. with slight modifications (Biotechnol. Lett. 2000; 22:585-588). Highly mucoid colonies (ATCC 9945a) were selected from Bacillus licheniformis (ATCC 9945) cultured on the E medium (ingredients comprising L-glutamic acid, 20.0 g / l; citric acid, 12.0 g / l; glycerol, 80.0 g / l; NH4Cl, 7.0 g / l; K2HPO4, 0.5 g / l; MgSO4.7H2O, 0.5 g / l; FeCl3.6H2O, 0.04 g / l; CaCl2.2H2O, 0.15 g / l; MnSO4.H2O, 0.104 g / l, pH 6.5) agar plates at 37° C. for several times.

[0090]Subsequently, young mucoid colonies were transferred into 10 ml E medium and grown at 37° C. in a shaking incubator at 250 rpm for 24 hours. Afterward, 500 μl of culture broth was mixed with 50 ml E medium and was transferred into a 2.5-1 jar-fermentor (KMJ-2B, Mituwa Co., Osaka, Japan) containing 950 ml of E medium. Cells were cultur...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention discloses particulate complexes composed of chitosan, poly-glutamic acid, and at least one bioactive agent, wherein equal moles of the positively charged chitosan and the negatively charged poly-glutamic acid substrate form an electrostatic network enabling improved loading the bioactive agent.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS[0001]This application is a continuation application of U.S. patent application Ser. No. 13 / 356,583, filed Jan. 23, 2012, which is a continuation-in-part application of U.S. patent application Ser. No. 13 / 134,798, filed Jun. 17, 2011, now U.S. Pat. No. 8,153,153, which is a continuation-in-part application of U.S. patent application Ser. No. 12 / 931,202, filed Jan. 26, 2011, now U.S. Pat. No. 7,993,624, which is a continuation application of U.S. patent application Ser. No. 12 / 800,848, filed May 24, 2010, now U.S. Pat. No. 7,879,313, which is a continuation-in-part application of U.S. patent application Ser. No. 12 / 321,855, filed Jan. 26, 2009, now U.S. Pat. No. 7,871,988, which is a continuation-in-part application of U.S. patent application Ser. No. 12 / 286,504, filed Sep. 30, 2008, now U.S. Pat. No. 7,604,795, which is a continuation-in-part application of U.S. patent application Ser. No. 12 / 151,230, filed May 5, 2008, now U.S. Pat. No. 7,541,...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): A61K9/14A61K31/713A61K31/7105A61K38/02A61K31/7052A61K31/727A61K38/27A61K31/13A61K31/445A61K31/27A61K38/28A61K31/55A61K31/473A61K38/23A61K38/13A61K38/24A61K38/44A61K38/20A61K38/21A61K38/19A61K48/00A61K38/11A61K31/198A61K38/08A61K38/06A61K38/18A61K38/34A61P31/12A61P35/00A61P31/04A61P29/00A61P25/28A61P25/08A61P31/18A61P39/06A61P27/02A61P25/00A61P3/10A61K31/711B82Y5/00
CPCA61K9/0043A61K9/5146A61K31/55A61K31/13A61K31/445A61K9/5161A61P25/00A61P25/08A61P25/28A61P27/02A61P29/00A61P31/04A61P31/12A61P31/18A61P35/00A61P39/06A61P3/10
Inventor SUNG, HSING-WENLIAO, ZI-XIANPENG, SHU-FENTU, HOSHENG
Owner NANOMEGA MEDICAL CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products