Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Substantially pure reverse transcriptases and methods of prooduction thereof

a reverse transcriptase, substantial technology, applied in the fields of protein purification, protein chemistry and protein purification, can solve the problems of large production-scale preparations, large batch sizes, and distinct disadvantages of methods, so as to prevent the contamination of enzymes, and prevent the release of nucleic acids

Inactive Publication Date: 2005-12-22
LIFE TECH CORP
View PDF24 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0008] In addition to these various chemical treatments a number of physical methods of disruption have been used. These physical methods include osmotic shock, e.g., suspension of the cells in a hypotonic solution in the presence or absence of emulsifiers (Roberts, J. D., and Lieberman, M. W., Biochemistry 18:4499-4505 (1979); Felix, H., Anal. Biochem. 120:211-234 (1982)), drying (Mowshowitz, D. B., Anal. Biochem. 70:94-99 (1976)), bead agitation such as ball milling (Felix, H., Anal. Biochem. 120:211-234 (1982); Cull, M., and McHenry, C. S., Meth. Enzymol. 182:182:147-153 (1990)), temperature shock, e.g., freeze-thaw cycling (Lazzarini, R. A., and Johnson L. D., Nature New Biol. 243:17-20 (1975); Felix, H., Anal, Biochem. 120:211-234 (1982)), sonication (Amos, H., et al., J. Bacteriol. 94:232-240 (1967); Ausubel, F. M., et al., in Current Protocols in Molecular Biology, New York, John Wiley & Sons (1993), pp. 4.4.1-4.47) and pressure disruption, e.g., use of a french pressure cell (Ausubel, F. M., et al., in Current Protocols in Molecular Biology, New York, John Wiley & Sons (1993), pp. 16.8.6-16.8.8). Other approaches combine these chemical and physical methods of disruption, such as lysozyme treatment followed by sonication or pressure treatment, to maximize cell disruption and protein release (Ausubel, F. M., et al., in Current Protocols in Molecular Biology, New York, John Wiley & Sons (1993), pp. 4.4.1-4.47).
[0012] Instead of attempting to remove nucleic acids from preparations of reverse transcriptase enzymes, a more reasonable and successful approach would be to prevent contamination of the enzymes by nucleic acids from the outset in the purification process. Such an approach would be two-pronged: 1) preventing release of nucleic acids from the bacterial cells during permeabilization of the cells to release the enzymes; and 2) preventing contamination of the enzymes during the purification process itself. Furthermore, an optimal method would obviate the need for centrifugation in the process, thus allowing large-scale, and even continuous, production of nucleic acid-free reverse transcriptase enzymes. The present invention provides such methods, and reverse transcriptase enzymes produced by these methods.

Problems solved by technology

However, these methods possess distinct disadvantages as well.
This need for centrifugation limits the batch size capable of being processed in a single preparation to that of available centrifuge space; thus, large production-scale preparations are impracticable if not impossible.
Furthermore, physical methods, and many chemical techniques, typically result in the release from the cells not only of the desired intracellular proteins, but also of undesired nucleic acids and membrane lipids (the latter particularly resulting when organic solvents are used).
These undesirable cellular components also complicate the subsequent processes for purification of the desired proteins, as they increase the viscosity of the extracts (Sambrook, J., et al., in: Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press (1989), pp.
One problem associated with these approaches is that the enzyme preparations are typically contaminated with nucleic acids (e.g., RNA and DNA).
Since reverse transcriptase enzymes are routinely used in techniques of amplification and synthesis of nucleic acid molecules (e.g., the Polymerase Chain Reaction (PCR), particularly RT-PCR) the presence of contaminating DNA or RNA in the enzyme preparations is a significant problem since it can give rise to spurious amplification or synthesis results.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example 1

Permeabilization of Bacterial Cells

[0045] In the initial steps of the purification process, 20 kg bacterial cells (E. coli, N4830 (pRT601) (see U.S. Pat. No. 5,017,492; ATCC deposit no. 67007) containing the expression vector for MMLV-RT which were obtained directly from actively growing cultures were suspended at 250 g of cells / L into cold (4° C.) permeabilization buffer (100 mM BisTRIS, 5.0% Triton X-100, 2.0% sodium deoxycholic acid, 10 mM EDTA, 1 mM dithiothreitol (DTT), pH 7.0.

[0046] During suspension of the cells in the buffer, phenylmethylsulfonylfluoride (PMSF) was added to a final concentration of 1.0 mM. Cells were stirred for about 45 minutes at 4° C. to ensure complete suspension, and then ammonium sulfate was added to a final concentration of 300 mM and the cell suspension was stirred for an additional 45 minutes. During this time, cells were permeabilized via the action of the deoxycholic acid and Triton X-100, and intracellular protein release into the buffer was en...

example 2

Microfiltration, Concentration and Diafiltration of Extracts

[0047] Microfiltration of the suspension was then carried out through 120 ft2 0.2 μm Microgon mixed ester cellulose hollow fiber system, using a re-circulation rate of 120 L / min. The suspension was diafiltered with five to six volumes of cold filtration buffer, collecting the permeate in a suitable sized chilled (4° C.) container. Under these conditions, recombinant enzymes passed through the membrane with the permeate, leaving the bacterial cells in the retentate.

[0048] As the ultrafiltration proceeded, concentration of the permeate was begun once a sufficient volume had been collected to prime the second ultrafiltration system. Permeate was concentrated using an Amicon DC-90 system, through an AG technologies 10,000 MWCO membrane (although alternative membrane systems of 10,000 MWCO, such as a Filtron system, a Millipore plate and frame system, or a membrane from Microgon may be also used) and an in-line chiller to mini...

example 3

Purification and Characterization of DNA-Free Enzyme

[0049] Purification of the enzyme from the ultrafiltrate was accomplished by a series of chromatographic steps, using a procedure modified slightly from that described for purification of T5 DNA polymerase from E. coli (Hughes, A. J., Jr., et al., J. Cell Biochem. Suppl. 0 16(Part B):84 (1992)).

A. Macroprep High S

[0050] The filtrate was mixed with 9 L Whatman DE-52 and then was polish filtered through two CUNO 8ZP 10 A depth filters. In the first chromatographic step, the ultrafiltrate was applied to a 9 L BioRad Macroprep High S. The column was then washed with 10 volumes of 20 mM TRIS, 150 mM NaCl, 0.1 mM EDTA, 10% glycerol, 0.01% Triton X-100, 1 mM DTT, pH 8.0 at 4.0° C. run at a flow rate of about 20 cm / hr. Product elution was effected with a ten column volume gradient of the wash buffer to this same buffer containing 800 mM NaCl w / o EDTA run at 10 cm / hr. Fractions demonstrating at least ⅓ of the large UV peak were pooled a...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The present invention provides substantially pure reverse transcriptases, which are preferably substantially free from contamination with nucleic acids. The invention also provides methods for the production of these enzymes, and kits comprising these enzymes which may be used in synthesizing, amplifying or sequencing nucleic acid molecules, including through the use of the polymerase chain reaction, particularly RT-PCR.

Description

CROSS REFERENCE TO RELATED APPLICATIONS [0001] The present application is a continuation of U.S. application Ser. No. 10 / 640,662, filed Aug. 14, 2003, which is a divisional of U.S. application Ser. No. 09 / 533,548, filed Mar. 23, 2000, now U.S. Pat. No. 6,630,333, which claims the benefit of U.S. Provisional Patent Application No. 60 / 126,050, filed Mar. 23, 1999, the disclosures of each of which are incorporated herein by reference in their entireties.BACKGROUND OF THE INVENTION [0002] 1. Field of the Invention [0003] The present invention is in the fields of molecular biology, protein chemistry and protein purification. Specifically, the invention provides compositions comprising reverse transcriptases (RTs) and methods for the production of such reverse transcriptase enzymes. Such methods provide for reverse transcriptases that are substantially free from contamination by nucleic acids and other unwanted materials or proteins. Compositions comprising the reverse transcriptase enzym...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): C12N1/21C12N9/12C12N9/22C12N9/88
CPCC12N9/1276C12N9/1241
Inventor HUGHES, A. JOHN JR.
Owner LIFE TECH CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products