Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Method for enhancing immune responses in mammals

Inactive Publication Date: 2007-03-22
CYTOLOGIC
View PDF98 Cites 15 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0019] In a particularly useful embodiment, the binding partner, such as a TNFα mutein, is immobilized previously on a solid support to create an “absorbent matrix” (FIG. 1). The exposure of biological fluids to such an absorbent matrix will permit binding by the immune system inhibitor such as soluble TNF receptor, thus, effecting a decrease in its abundance in the biological fluids. The treated biological fluid can be returned to the patient. The total volume of biological fluid to be treated and the treatment rate are parameters individualized for each patient, guided by the induction of vigorous immune responses while minimizing toxicity. The solid support (i.e., inert medium) can be composed of any material useful for such purpose, including, for example, hollow fibers, cellulose-based fibers, synthetic fibers, flat or pleated membranes, silica-based particles, macroporous beads, and the like.

Problems solved by technology

Second, certain immune system inhibitors antagonize the binding of immune system stimulators to their receptors.
Third, particular immune system inhibitors exert their effects by binding to receptors on host cells and signaling a decrease in their production of immune system stimulators.
Fourth, certain immune system inhibitors act directly on immune cells, inhibiting their proliferation and function, thereby decreasing the vigor of the immune response.
In cases where the production of any of the aforementioned immune system inhibitors, either individually or in combination, dampens or otherwise alters immune responsiveness before the elimination of the pathogenic agent, a chronic infection may result.
These therapies have enjoyed limited success (Sidhu and Bollon, supra, Maas et al., supra) due to the fact: 1) that at the levels employed they proved extremely toxic; and 2) that each increases the plasma levels of the immune system inhibitor, sTNFRI (Lantz et al., Cytokine 2:402-406 (1990); Miles et al., Brit. J. Cancer 66:1195-1199 (1992)).
Although Ultrapheresis provides advantages over traditional therapeutic approaches, there are certain drawback that limit its clinical usefulness.
An additional drawback to Ultrapheresis is the significant loss of circulatory volume during treatment, which must be offset by the infusion of replacement fluid.
The chronic shortage of donor plasma, combined with the risks of infection by human immunodeficiency virus, hepatitis A, B, and C or other etiologic agents, represents a severe impediment to the widespread implementation of Ultrapheresis.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method for enhancing immune responses in mammals
  • Method for enhancing immune responses in mammals
  • Method for enhancing immune responses in mammals

Examples

Experimental program
Comparison scheme
Effect test

example 1

Production, Purification, and Characterization of the Immune System Inhibitor, Human sTNFRI

[0077] The sTNFRI used in the present studies was produced recombinantly either in E. coli (R&D Systems; Minneapolis Minn.) or in eukaryotic cell culture essentially as described (see U.S. Pat. No. 6,379,708, which is incorporated herein by reference). The construction of the eukaryotic expression plasmid, the methods for transforming and selecting cultured cells, and for assaying the production of sTNFRI by the transformed cells have been described (Selinsky et al., supra, 1998).

[0078] sTNFRI was detected and quantified in the present studies by capture ELISA (Selinsky et al., supra). In addition, the biological activity of recombinant sTNFRI, that is, its ability to bind TNF, was confirmed by ELISA. Assay plates were coated with human TNF a (Chemicon; Temecula Calif.), blocked with bovine serum albumin, and sTNFRI, contained in culture supernatants as described above, was added. Bound sTNF...

example 2

Production, Purification, and Characterization of TNFα Muteins

[0079] Briefly, TNFα muteins 1, 2, 3 and 4 were produced by expression of the respective cDNAs in E. coli. Genes encoding TNFα and TNFα muteins 1, 2, 3 and 4 were prepared using overlapping oligonucleotides having codons optimized for bacterial expression. Each of the coding sequences was fused in frame to that encoding the ompA leader to permit export of the recombinant polypeptides to the periplasm. Synthetic fragments were cloned into a pUC19 derivative immediately downstream of the lac Z promoter, and the resulting recombinant plasmids were introduced into E. coli. Recombinant bacteria were cultured to late-log, induced with isopropyl-β-D-thiogalactopyranoside (IPTG) for three hours, and harvested by centrifugation. Periplasmic fractions were prepared and tested by ELISA using polyclonal goat anti-human TNFα capture antibodies. After the addition of the diluted periplasms, bound TNFα and TNFα muteins 1, 2, 3 and 4 we...

example 3

Depletion of the Immune System Inhibitor, sTNFRI, from Human Plasma Using TNFα Mutein Absorbent Matrices

[0082] The TNFα mutein absorbent matrices were produced and tested for their ability to deplete sTNFRI from human plasma. Briefly, purified TNFα muteins 1, 2 and 4 each was conjugated to cyanogen bromide (CNBr) Sepharose™ 4B at a density of 0.5 mg per ml of beads, and the remaining CNBr groups were quenched with ethanolamine. The resulting matrices were packed in individual column housings and washed extensively with phosphate buffered saline prior to use.

[0083] Normal human plasma was spiked (33% v / v) with culture supernatant containing recombinant human sTNFRI (see Example 1) to a final concentration of 8 nanograms per milliliter and passed through the respective columns at a flow rate of one milliliter of plasma per milliliter of resin per minute. An additional column, with no immobilized protein and quenched with ethanolamine, was included to control for non-specific depleti...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Chemically inertaaaaaaaaaa
Solubility (mass)aaaaaaaaaa
Water absorptionaaaaaaaaaa
Login to View More

Abstract

The present invention provides a method for enhancing an immune response in a mammal to facilitate the elimination of a chronic pathology. The method involves the removal of immune system inhibitors such as soluble TNF receptor from the circulation of the mammal, thus, enabling a more vigorous immune response to the pathogenic agent. The removal of immune system inhibitors is accomplished by contacting biological fluids of a mammal with one or more binding partner(s) such as TNFα muteins capable of binding to and, thus, depleting the targeted immune system inhibitor(s) from the biological fluids. Particularly useful in the invention is an absorbent matrix composed of an inert, biocompatible substrate joined covalently to a binding partner, such as a TNFα mutein, capable of specifically binding to a targeted immune system inhibitor such as soluble TNF receptor.

Description

[0001] This invention relates generally to the field of immunotherapy and, more specifically, to methods for enhancing host immune responses. BACKGROUND OF THE INVENTION [0002] The immune system of mammals has evolved to protect the host against the growth and proliferation of potentially deleterious agents. These agents include infectious microorganisms such as bacteria, viruses, fungi, and parasites which exist in the environment and which, upon introduction to the body of the host, can induce varied pathological conditions. Other pathological conditions may derive from agents not acquired from the environment, but rather which arise spontaneously within the body of the host. The best examples are the numerous malignancies known to occur in mammals. Ideally, the presence of these deleterious agents in a host triggers the mobilization of the immune system to effect the destruction of the agent and, thus, restore the sanctity of the host environment. [0003] The destruction of pathog...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): A61K38/19C07K14/525A61K9/14
CPCC07K14/525A61K38/00A61P31/00A61P31/04A61P31/10A61P31/12A61P33/00A61P35/00A61P37/04A61M1/3615A61M1/3621A61M1/38
Inventor HOWELL, MARK DOUGLAS
Owner CYTOLOGIC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products