Fluoropolymer composition

a technology of fluoropolymer and composition, applied in the field of fluoropolymer composition, can solve the problems of increasing the melt viscosity of the blend, affecting the shear rate of the molded article, so as to achieve the effect of reducing melt viscosity, reducing melt viscosity and improving shear ra

Inactive Publication Date: 2007-05-24
EI DU PONT DE NEMOURS & CO
View PDF17 Cites 30 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0004] U.S. 2004 / 0242783 A1 discloses a blend of tetrafluoroethylene / hexafluoropropylene copolymer, commonly called FEP, and polytetrafluoroethylene (PTFE), the PTFE imparting the improved extrusion property of reduced cone breaks during melt draw down extrusion coating of wire. The PTFE content of the blend is disclosed to be 0.03 to 2 parts by weight based on 100 parts by weight of the copolymer. When the amount of PTFE is more than 2 parts by weight, two disadvantageous results are disclosed: the melt viscosity of the blend increases significantly and the molded article tends to become brittle [0027]. These are the same effects as adding filler to a polymer, except that in the case of adding PTFE to FEP, the disadvantageous effects arise with even small additions of the PTFE to the FEP.
[0005] The present invention includes the discovery of melt-fabricable perfluoropolymer compositions containing PTFE in much greater amounts than 2 parts by weight per 100 parts by weight of the perfluoropolymer that have desirable viscosities for melt fabrication and that do not become brittle. According to one embodiment, the present invention is a melt-mixed composition comprising non-melt flowable polytetrafluoroethylene (PTFE) and melt-fabricable perfluoropolymer, said PTFE constituting at least 4 wt % of the combined weight of said PTFE and said melt-fabricable perfluoropolymer, said composition exhibiting thixotropy when being subjected to increasing shear in the molten state. Thus, the compositions of the present invention exhibit reduced melt viscosity at increasing shear rate. Under shear conditions used in melt mixing involved in melt fabrication, the melt viscosity of the composition becomes low enough to enable the compositions to be melt-fabricated, notwithstanding that the PTFE is non melt flowable, i.e. the PTFE has such a high viscosity in the molten state that it does not flow and therefore is not melt-processable. Preferably this thixotropy is characterized by a reduction in melt viscosity upon increasing the shear rate applied to the molten dispersion from about 10 s−1 to 100 s−1 that is at least about 10% greater, preferably at least about 100% greater, than the reduction in melt viscosity at the same shear rates for the melt-fabricable perfluoropolymer by itself, as determined by the capillary rheometer method described later herein. The thixotropy imparted to the perfluoropolymer by non-melt flowable PTFE is a surprising result and exists for high contents for the PTFE, e.g. up to about 65 wt % thereof and even up to about 75 wt % thereof, based on the combined weight of the PTFE and the melt-fabricable perfluoropolymer.
[0006] The melt-fabricable perfluoropolymer component of the composition of the present invention imparts melt-fabricability to the composition. Thus, the composition is melt-fabricable by such processes as extrusion and injection molding to form strong, tough products. Some indicia of this strength and toughness are the tensile and flexural properties of the composition disclosed herein.
[0007] The fact that the composition of the present invention is not brittle is evident from the fact that it exhibits a high elongation at break. Preferably, its elongation at break is at least about 200%, more preferably at least about 250%, at up to at least about 30 wt % PTFE in the composition, based on the combined weight of the PTFE and perfluoropolymer. Most preferably, the composition exhibits an elongation at break that is at least as high as that of the melt-fabricable perfluoropolymer by itself, indicating that the presence of the PTFE is not making the composition brittle. This effect extends well above the 4 wt % PTFE content of the composition, preferably at least to up to about 15 wt % PTFE, based on the combined weight of the PTFE and melt-fabricable perfluoropolymer. The composition of the present invention also exhibits properties indicating that the PTFE in the composition is reinforcing the composition, rather than acting as a filler. For example, both the tensile strength and elongation at break can be greater than for the melt-fabricable perfluoropolymer by itself. Another indicia of the composition of the present invention not being brittle arises from its exhibiting an MIT Flex Life of at least 500 cycles, preferably at least 1000 cycles, i.e. film made from the composition by the MIT Flex Life test procedure is flexed over upon itself repeatedly without breaking. Preferably the MIT flex life of the composition is at least as great as for the perfluoropolymer by itself. The melt-mixed composition of this embodiment of the present invention can be considered as a melt blend of the PTFE and perfluoropolymer components.
[0008] According to another embodiment, the present invention is a melt-mixed composition comprising a dispersion of submicrometer-size particles comprising non-melt flowable polytetrafluoroethylene (PTFE) in a continuous phase comprising melt-fabricable perfluoropolymer, said dispersion exhibiting thixotropy when subjected to increasing shear in the molten state. The continuous phase being the melt flowable perfluoropolymer is confirmed by the melt fabricability of the melt mixed composition. Articles molded from the composition are transparent to translucent, rather than opaque as are articles molded from PTFE.
[0009] Both the non-brittle and thixotropic attributes described above are believed to arise from this novel dispersion / continuous phase structure, wherein the PTFE is present in such small particle size within the perfluoropolymer continuous phase. This novel structure exists at compositions containing less than 4 wt % PTFE although this is a preferred minimum amount. For example, the melt-mixed dispersion composition can contain as little as about 0.1 wt % PTFE based on the combined weight of the PTFE and perfluoropolymer, and the dispersion structure can exist for amounts of PTFE greater than about 50 wt %, e.g. up to about 65 wt % PTFE and even up to about 75 wt %, based on the combined weight of the PTFE and perfluoropolymer, because of the small size of the PTFE particle. All of the thixotropy, elongation at break, tensile strength, and MIT Flex Life parameters applied to the first mentioned embodiment of the present invention also apply to this embodiment.

Problems solved by technology

When the amount of PTFE is more than 2 parts by weight, two disadvantageous results are disclosed: the melt viscosity of the blend increases significantly and the molded article tends to become brittle .
These are the same effects as adding filler to a polymer, except that in the case of adding PTFE to FEP, the disadvantageous effects arise with even small additions of the PTFE to the FEP.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

examples

Test Procedures

[0048] The procedures for determining melt creep viscosity, standard specific gravity (SSG), melt flow rate (MFR), core / shell polymer composition, and average core / shell polymer particle size (RDPS) reported in the Examples are disclosed earlier herein. The determination of melt viscosity is also disclosed earlier herein. All of the core / shell polymers and separate melt-fabricable perfluoropolymers disclosed in the Examples exhibited a melt viscosity less than about 5×104 Pa·s at 350° C. and shear rate of 101 s−1.

[0049] The thixotropy of the melt blends described in the Examples is determined by capillary rheometry method of ASTM D 3835-02 in which the melt temperature of the polymer in the rheometer is 350° C. This method involves the extrusion of molten polymer through the barrel of a Kayeness® capillary rheometer at a controlled force to obtain the shear rate desired. The results are reported in the Examples as melt viscosity change (reduction), Δη in Pa·s in in...

example 1

[0056] Core / shell polymer when the shell polymer is FEP and the proportion of core to shell is widely varied, is made in this Example. A cylindrical, horizontal, water-jacketed, paddle-stirred, stainless steel reactor having a length to diameter ratio of about 1.5 and a water capacity of 10 gallons (37.9 L) was charged with 50 pounds (22.7 kg) of demineralized water and 330 mL of a 20 wt % solution of ammonium perfluorooctanoate surfactant in water. With the reactor paddle agitated at 46 rpm, the reactor was heated to 60° C., evacuated and purged three times with tetrafluoroethylene (TFE). The reactor temperature then was increased to 103° C. After the temperature had become steady at 103° C., the pressure of the reactor was raised to 250 psig (1.75 MPa) using TFE. Fifty milliliters of an initiating solution consisting of 1.04 wt % APS and 0.94 wt % KPS in water was injected to the reactor, then this same initiator was added at 0.5 mL / min. After polymerization had begun as indicated...

examples 2-6

[0057] Examples 2 through 6 were prepared in a manner similar to Example 1, with the proportions of core and shell altered by changing the relative amounts of TFE fed during each phase of polymerization. Details are given in Table 1 below.

TABLE 1PTFEHFPPEVEHFPPEVETensileExampleCore,Content,Content,Content inContent inMFR,Strength,ElongationΔη,Numberwt %wt %wt %Shell, wt %Shell, wt %g / 10 minMPaat Break, %Pa · s17.6%6.841.377.411.48026.735712936211.5%6.421.437.251.620.423.83936273315.4%6.411.477.571.740.721.33586495419.2%6.181.697.652.09024.93949000526.9%5.831.817.982.48020.93389113639.0%5.081.308.342.12017.323510344

Each of the polymerizations was carried out to a solids content of 33.8 to 35.8 wt % and the RDPS of the polymer particles ranged from 194 to 261 nm (0.194 to 0.261 micrometers). As compared to the reduction in melt viscosity of 101 Pa·s for typical FEP by itself (Comparison Example A), the core / shell polymer of the present invention exhibits a much greater melt viscosi...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
elongation at breakaaaaaaaaaa
elongation at breakaaaaaaaaaa
particle sizeaaaaaaaaaa
Login to view more

Abstract

A melt-mixed composition of non-melt flowable polytetrafluoroethylene (PTFE) and melt-fabricable perfluoropolymer is provided that exhibits thixotropy at increasing shear rate in the molten state and high elongation at break even at PTFE concentrations well above 4 wt %, based on the combined weight of the PTFE and the perfluoropolymer, e.g. at least 200% up to at least 30 wt % PTFE, the composition also exhibiting the structure of a dispersion of submicrometer-size particles of the PTFE in a continuous phase of the melt-fabricable perfluoropolymer.

Description

BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] This invention relates to fluoropolymer compositions of polytetrafluoroethylene and other perfluoropolymers. [0003] 2. Description of Related Art [0004] U.S. 2004 / 0242783 A1 discloses a blend of tetrafluoroethylene / hexafluoropropylene copolymer, commonly called FEP, and polytetrafluoroethylene (PTFE), the PTFE imparting the improved extrusion property of reduced cone breaks during melt draw down extrusion coating of wire. The PTFE content of the blend is disclosed to be 0.03 to 2 parts by weight based on 100 parts by weight of the copolymer. When the amount of PTFE is more than 2 parts by weight, two disadvantageous results are disclosed: the melt viscosity of the blend increases significantly and the molded article tends to become brittle [0027]. These are the same effects as adding filler to a polymer, except that in the case of adding PTFE to FEP, the disadvantageous effects arise with even small additions of the...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): C08L27/12
CPCC08F114/26C08F259/08C08L27/18C08L51/003C08L2205/02C08F2/00C08L2666/02C08L2205/025Y10S525/902
Inventor BURCH, HEIDI ELIZABETHVENKATARAMAN, SUNDAR KILNAGARATEN, RALPH MUNSON
Owner EI DU PONT DE NEMOURS & CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products