Magnetic substance-biosubstance complex structure, peptide fragment capable of linking to magnetic substance and gene therefor, and process for producing the complex structure

a biosubstance and complex structure technology, applied in the field of peptide fragments capable of linking to magnetic substances, can solve problems such as conversion or denaturation of biosubstances, and achieve the effect of high reproducibility

Inactive Publication Date: 2008-05-08
CANON KK
View PDF13 Cites 17 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0011] After comprehensive investigation to solve the above problems, the inventors of the present invention found that a peptide having a specified amino acid sequence can be linked to a magnetic substance surface stably with high reproducibility, and further found that a biosubstance-spacer complex which is formed from the biosubstance and a spacer having a peptide fragment containing an amino acid sequence linkable to the aforementioned magnetic substance can be immobilized on the magnetic substance by the linking ability of the spacer portion. Furthermore, the inventors of the present invention confirmed that the biosubstance-spacer complex itself having the spacer preliminarily linked thereto can be prepared in a state so as to perform effectively the inherent function, and consequently, the biosubstance-spacer complex, when immobilized on the surface of the magnetic substance, can be held with its function kept active.
[0012] The inventors of the present invention found also that the peptide fragment having the amino acid sequence linkable to a desired magnetic substance can readily be obtained from a random peptide library in dependence upon the linking ability to the magnetic substance, and with the amino acid sequence of the peptide fragment, the spacer containing the peptide fragment having an amino acid sequence capable of linking to the magnetic substance can be designed readily. In addition to the above findings, the inventors of the present invention found that a biosubstance-spacer complex retaining the inherent function can be prepared from various biosubstances, and the structures which are obtained by immobilizing a biosubstance through a spacer containing a peptide fragment having an amino acid capable of linking directly to the magnetic substance are useful for various applications and purposes. The present invention has been accomplished based on the above findings.

Problems solved by technology

Such a technique is liable to cause conversion or denaturation of the biosubstance depending on the covalent bond formation conditions (such as temperature, pH, and reagent).

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

reference example 1

Preparation of Magnetic Particles

[0068] An aqueous solution containing ferrous hydroxide was prepared by adding, to an aqueous ferrous sulfate solution, a sodium hydroxide solution in an amount of 1.0-1.1 equivalent to the ferrous ion. Air was blown into this aqueous solution by keeping the pH of the aqueous solution at about 8 to cause oxidation reaction at 80-90° C. to obtain a liquid slurry for formation of seed crystals.

[0069] To this liquid slurry, was added an aqueous ferrous sulfate solution in an amount of 0.9-1.2 equivalent to the above added alkali (the sodium of the above added sodium hydroxide), and air is blown therein to proceed an oxidation reaction by keeping the pH at about 8. The formed magnetic iron oxide particles after the oxidation reaction was collected by filtration, washed, and dried. The particulate iron oxide in an aggregating state was crushed to obtain magnetic particles (1) having an average particle size of 0.10 μm.

example 1

Formation of Peptide Structure Capable of Linking to Magnetic substance

1. Preparation of Liquid Suspension of Magnetic Particles

[0070] To 5 mg of magnetic particle (1) prepared in Reference Example 1, was added 1 mL of a TBS buffer (50 mM tris-HCl (pH 7.5), 150 mM NaCl) to form a suspension. The suspension was centrifuged at 10,000 rpm (9300 g) for 5 minutes, and the supernatant was eliminated. The precipitate was suspended in 1 mL of acetone. The suspension was again centrifuged and the supernatant was eliminated under the same conditions as above. Further to the precipitate, was added 1 mL of a TBS-0.1T buffer (50 mM tris-HCl (pH 7.5), 150 mM NaCl, 0.1% Tween-20) to form a suspension. The suspension was centrifuged under the above conditions, and the supernatant was eliminated. This operation was repeated two more times. The obtained precipitate was suspended in 1 mL of a TBS-0.1T buffer. To 10 μL of the suspension, was added 990 μL of the TBS-0.1T buffer to prepare a magnetic ...

example 2

Evaluation of Linkage of Magnet-Linking Peptide Structure to Magnetic substance

[0074] A 5 μg portion of the magnetic fine particles prepared in Reference Example 1 was suspended in 100 μL of a TBS-0.1T buffer (50 mM tris-HCl (pH 7.5), 150 mM NaCl, 0.1% Tween 20). Thereto was added 10 μL of a solution containing 2×10 pfu of the phage having a peptide of the amino acid sequence SEQ ID NO:15. The mixture was agitated at room temperature (25° C.) for 30 minutes to cause linking reaction. Further it was suspended in TBS-0.5T buffer (50 mM tris-HCl (pH 7.5), 150 mM NaCl, 0.5% Tween 20), and was recovered by magnetic force. This treatment was repeated 10 times to release and wash off the non-adsorbed and non-specifically adsorbed phage.

[0075] According to the method described in Nature, 405, 665-668 (2000), the recovered magnetic fine particles containing specifically adsorbed phage were allowed to react with an anti-fd phage antibody-biotin complex (produced by Sigma Co.) and streptavid...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

A magnetic substance-biosubstance complex structure comprises a magnetic substance-containing carrier and a biosubstance immobilized on the carrier, the biosubstance being immobilized through a spacer comprising an amino acid sequence on a surface of the carrier.

Description

TECHNICAL FIELD [0001] The present invention relates to a magnetic substance-biological substance complex type structure, a peptide fragment and a gene having an amino acid sequence capable of linking to the magnetic substance for preparation of the structure, and a process for producing the magnetic substance-biological substance complex type structure. (Hereinafter the “biological substance” is referred to as a “biosubstance”.) In particular the present invention relates to a structure containing a biosubstance immobilized on a magnetic substance-containing carrier which is useful in biochemical fields and medical field as carriers of diagnostic agents, carriers for separation of bacteria or biological cells, carriers for separation and purification of nucleic acids or proteins, carriers for drug delivery, carriers of enzyme reaction, carriers for cell culture, and carriers for drug screening; and to a process for producing the structure. BACKGROUND ART [0002] A magnetic substance...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): C12N9/00C07H23/00C11C3/00C07K1/00C07H21/04C07K14/00C12N15/09C07K7/08C07K17/14C07K19/00C12N9/10C12N11/06C12N11/14C12N15/10G01N33/543
CPCC07K2319/00C12N9/1025C12N11/06G01N33/54353C12N15/1013G01N33/54326C12N11/14Y10S530/811
Inventor IMAMURA, TAKESHIYANO, TETSUYANOMOTO, TSUYOSHIKOZAKI, SHINYAHONMA, TSUTOMUTSUCHITANI, AKIKO
Owner CANON KK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products