Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

406 results about "Liquid crystal light valve" patented technology

Laser projection apparatus with liquid-crystal light valves and scanning reading beam

Laser lines at 635 nm or longer (ideally 647 nm) are preferred for red, giving energy-efficient, bright, rapid-motion images with rich, full film-comparable colors. Green and blue lines are used too—and cyan retained for best color mixing, an extra light-power boost, and aid in speckle suppression. Speckle is suppressed through beam-path displacement—by deflecting the beam during projection, thereby avoiding both absorption and diffusion of the beam while preserving pseudocollimation (noncrossing rays). The latter in turn is important to infinite sharpness. Path displacement is achieved by scanning the beam on the liquid-crystal valves (LCLVs), which also provides several enhancements—in energy efficiency, brightness, contrast, beam uniformity (by suppressing both laser-mode ripple and artifacts), and convenient beam-turning to transfer the beam between apparatus tiers. Preferably deflection is performed by a mirror mounted on a galvanometer or motor for rotary oscillation; images are written incrementally on successive portions of the LCLV control stage (either optical or electronic) while the laser “reading beam” is synchronized on the output stage. The beam is shaped, with very little energy loss to masking, into a shallow cross-section which is shifted on the viewing screen as well as the LCLVs. Beam-splitter/analyzer cubes are preferred over polarizing sheets. Spatial modulation provided by an LCLV and maintained by pseudocollimation enables imaging on irregular projection media with portions at distinctly differing distances from the projector—including domes, sculptures, monuments, buildings; waterfalls, sprays, fog, clouds, ice; scrims and other stage structures; trees and other foliage; land and rock surfaces; and even assemblages of living creatures including people.
Owner:TROYER DIANE

Laser projection apparatus with liquid-crystal light valves and scanning reading beam

InactiveUS6910774B2Achievement of good whites and blacks more awkwardIncrease powerStatic indicating devicesProjectorsBeam splitterLiquid crystal light valve
Laser lines at 635 nm or longer (ideally 647 nm) are preferred for red, giving energy-efficient, bright, rapid-motion images with rich, full film-comparable colors. Green and blue lines are used too—and cyan retained for best color mixing, an extra light-power boost, and aid in speckle suppression. Speckle is suppressed through beam-path displacement—by deflecting the beam during projection, thereby avoiding both absorption and diffusion of the beam while preserving pseudocollimation (noncrossing rays). The latter in turn is important to infinite sharpness. Path displacement is achieved by scanning the beam on the liquid-crystal valves (LCLVs), which also provides several enhancements—in energy efficiency, brightness, contrast, beam uniformity (by suppressing both laser-mode ripple and artifacts), and convenient beam-turning to transfer the beam between apparatus tiers. Preferably deflection is performed by a mirror mounted on a galvanometer or motor for rotary oscillation; images are written incrementally on successive portions of the LCLV control stage (either optical or electronic) while the laser “reading beam” is synchronized on the output stage. The beam is shaped, with very little energy loss to masking, into a shallow cross-section which is shifted on the viewing screen as well as the LCLVs. Beam-splitter / analyzer cubes are preferred over polarizing sheets. Spatial modulation provided by an LCLV and maintained by pseudocollimation enables imaging on irregular projection media with portions at distinctly differing distances from the projector—including domes, sculptures, monuments, buildings; waterfalls, sprays, fog, clouds, ice; scrims and other stage structures; trees and other foliage; land and rock surfaces; and even assemblages of living creatures including people.
Owner:TROYER DIANE

Display device

The invention discloses a display device. The display device comprises a three-dimensional display module, a transparent display module and a liquid crystal light valve, wherein the transparent display module is overlaid on the upper portion of the liquid crystal light valve, the three-dimensional transparent module is overlaid on the upper portion of the transparent display module, and the three-dimensional display module, the transparent display module and the liquid crystal light valve all comprise multiple electrodes which can be controlled independently. When display contents are arranged on the transparent display module, an area on the three-dimensional display module is in a three-dimensional (3D) display state, wherein the area on the three-dimensional display module corresponds to the display contents on the transparent display module, the other areas of the three-dimensional display module are in a two-dimensional (2D) display state. An area on the liquid crystal light valve is in a light-proof state, wherein the area on the liquid crystal light valve corresponds to the display contents on the transparent display module, and the other areas of the liquid crystal light valve is in a transparent state or a semi-transparent state. The display device is not only capable of improving real effects of 3D frames displayed by the 3D display area on the display device, but also improving a contrast ratio between stereo display and transparent display.
Owner:SHANGHAI AVIC OPTOELECTRONICS

Projection-type display apparatus

Provided are an illumination optical system allowing light beams to be condensed and enter an illumination area at different angles from each other, color separating elements that separate colors of the light beams from the illumination optical systems, liquid crystal light valves that modulate the color lights to form image light for the right and the left eyes, a color combining element that combines the color light beams, a wavelength-selective polarization rotating element that rotates the polarization direction of a predetermined color light so as to align the polarization direction with that of a light beam of another color, and a projection lens that magnifies and projects images. The liquid crystal light valves are provided with an incident side microlens array that causes the light beams for the right and the left eyes to pass respectively through the right and the left eye image pixels, and an exit side microlens array that condenses the light that has passed through the pixels. The projection lens is provided with a polarized light separating element that causes the polarization directions of image light for the right and the left eyes to be orthogonal to each other. Using one projection-type display apparatus, a highly efficient stereoscopic image can be displayed with little flicker and cross talk of image light for the right eye and for the left eye.
Owner:PANASONIC CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products