Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Plants with improved nitrogen utilization and stress tolerance

a technology of applied in the field of plants with improved nitrogen utilization and stress tolerance, can solve problems such as pollution problems in runoff, and achieve the effect of increasing nitrogen uptake and increasing nitrogen utilization efficiency

Inactive Publication Date: 2010-06-24
IOWA CORN PROMOTION BOARD
View PDF4 Cites 7 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0009]The invention also includes a method of expressing a nucleic acid molecule modulated by nitrogen in a plant, said method comprising the steps of providing a transgenic plant or plant seed transformed with a vector construct according to the present invention, and growing the transgenic plant or a plant grown from the transgenic plant seed under conditions effective to express the nucleic acid molecule in said transgenic plant or said plant grown from the transgenic plant seed. Growing of the transgenic plant is effective in increasing nitrogen uptake of said transgenic plant or said plant grown from the transgenic plant seed, and / or in increasing efficiency of nitrogen utilization of said transgenic plant or said plant grown from the transgenic plant seed. The invention also includes the foregoing methods wherein a transgenic plant is provided or a transgenic seed is provided. The invention also includes the foregoing method wherein the plant is selected from the group consisting of rice, corn, soybean, canola, wheat, alfalfa, barley, rye, cotton, sunflower, peanut, sweet potato, bean, pea, potato, oilseed rape, sorghum, forage grass, pasture grass, turf grass, sugarcane.

Problems solved by technology

Nitrogen is one of the most expensive plant nutrients to supply, nitrogen fertilizer is not always available at a reasonable cost, and excessive application of nitrogen fertilizer can result in pollution problems in runoff.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example 1

Identification of Candidate ESTs

[0112]The nucleotide sequence information for each of the candidate nitrogen-modulated genes was generated in a differential nitrogen microarray experiment conducted at the direction of applicant by Dr. Pat Schnable at Iowa State University. This microarray experiment was used as an initial screen to select a sub-set of ESTs that may be related to nitrogen conditions.

[0113]From the large number of EST sequences showing some difference in the microarray (136 with both 3′ and 5′ data), further selections were made following a bioinformatics analysis. This analysis included checking for nucleotide sequence similarities in the International Nucleotide Sequence Database (housed at NCBI), checking for predicted protein similarities in the protein databases, such as NCBI and Swisspro, exploring information concerning known or predicted function, and checking the nucleotide and protein databases at the patent office. Using the results of these analyses, as we...

example 2

Two Maize Proteins N-EST 77A, N-EST 77B

[0118]This invention describes the use of a maize gene sequence (from EST N-EST77-A01) to confer enhanced nitrogen utilization in transgenic maize (Zea mays). Two open reading frames are joined to a highly active plant promoter and a terminus to express each protein following integration into the maize genome. The ectopically expressed proteins will enhance the maize plant's ability to utilize available nitrogen.

[0119]Bioinformatics analysis revealed that there was no significant sequence homology with other sequences in the NCBI database. One portion showed some homology to a CCAAT-binding transcription factor in other species but not in maize. When the nucleotide sequence was received from the microarray experiment, there was also a predicted protein sequence. The predicted protein is referred to herein as N-EST77A. Examination of the nucleotide sequence indicated that the nucleotide could code for another protein (subsequently confirmed), an...

example 3

Maize Protein N-EST76

[0121]This Example describes the use of a maize gene sequence (from EST N-EST76-H12) to confer enhanced nitrogen utilization in transgenic maize (Zea mays). This particular EST possesses part of the nucleotide sequence that is homologous to the so-called “bZIP” class of transcription factors. For this invention, two separate gene constructs are overexpressed in plants. One construct (“N-EST76a”) contains the modified version of the N-EST76-H12 EST to allow a longer open reading frame to be expressed in maize. This modified gene contains 3 substitutions when compared to the gene sequence in the native EST. A second gene is also created which adds a basic region leucine zipper sequence to the 3′ end of the gene. The resulting gene is referred to as “N-EST76b”

[0122]The full-length clone sequence appeared to contain two different regions that code for proteins, protein I of 108 amino acids and protein II of 122 amino acids. It was recognized, however, that if the fu...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Fractionaaaaaaaaaa
Massaaaaaaaaaa
Massaaaaaaaaaa
Login to View More

Abstract

The present invention relates to transgenic plants that have increased nitrogen use efficiency, stress tolerance, or both and that have been transformed using a novel vector construct including nucleic acid sequences that modulate nitrogen use in plants. In various embodiments, the vector construct includes one or more nucleic acid sequences selected from the group consisting of SEQ ID NO: 2, 4, 7, 9, 11, 13, 15, 17, 22, 24, 26, 28, 30, 32, 34, 36, or 38. The invention also relates to isolated vectors for transforming plants and to antibodies used for detecting transformed plants. The invention also relates to methods of expressing in plants the nucleic acid molecules corresponding to the nucleic acid sequences that modulate nitrogen use in plants or are modulated by nitrogen conditions.

Description

CROSS REFERENCE TO RELATED APPLICATION[0001]This application claims priority to U.S. Application Ser. No. 60 / 854,927, filed Oct. 27, 2006, which is incorporated herein in its entirety by this reference.FIELD OF THE INVENTION[0002]The invention relates generally to plants with improved nitrogen utilization and stress tolerance, more specifically, to corn plants transformed with a gene that improves stress tolerance and nitrogen uptake, metabolism or both.BACKGROUND OF THE INVENTION[0003]Plants require nitrogen during their vegetative and reproductive growth phases. Nitrogen is made available to the plant through soil mineralization, the application of nitrogen fertilizer, or both. It has been estimated, however, that between 50 and 70 percent of nitrogen applied to crops is lost from the plant-soil system [Peoples, M. B. et al., “Minimizing Gaseous Losses of Nitrogen,” In Nitrogen Fertilizer in the Environment (Bacon, P. E., ed.) Marcel Dekker, pp. 565-606 (1995)]. Nitrogen is one of...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): A01H5/00C12N15/82C12N15/74C07K16/00C12N1/21C12N5/10
CPCC12N15/8261Y02A40/146C12N15/8271C12N15/8216
Inventor MCLAREN, JAMESDUCK, NICHOLASBERG, BRIAN VANDESCHAWALDER, ALISSABEILINSON, VADIMHINSON, JILL
Owner IOWA CORN PROMOTION BOARD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products