Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Magnesium salt luminescent material and preparation method thereof

A technology of luminescent materials and magnesium salts, which is applied in the field of magnesium salt luminescent materials and its preparation, can solve the problems of low luminous efficiency of luminescent materials, and achieve the effects of improved luminous efficiency, less process steps and high quality

Inactive Publication Date: 2014-10-29
OCEANS KING LIGHTING SCI&TECH CO LTD +2
View PDF2 Cites 1 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0003] Magnesium salt, especially magnesium aluminum (gallium) is a kind of green luminescent material, which is mainly used in field emission devices. However, the luminous efficiency of its luminescent material is not high at present, and needs to be improved.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Magnesium salt luminescent material and preparation method thereof

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0027] Preparation of Mg by Sol-Gel Method 0.8 al 2 o 4 :Mn 0.2 2+ ,Pd 1×10ˉ5 :

[0028] Preparation of Pd nanoparticle sol: Weigh 0.22 mg palladium chloride (PdCl 2 2H 2 O) Dissolved in 10mL of deionized water; when the palladium chloride was completely dissolved, weigh 11.0mg of sodium citrate and 4.0mg of sodium lauryl sulfate, and dissolve them in an aqueous solution of palladium chloride under a magnetic stirring environment; Weigh 0.38mg sodium borohydride and dissolve it in 100mL deionized water to obtain a concentration of 1×10 -4 mol / L sodium borohydride reducing solution; in the environment of magnetic stirring, quickly add 10mL1×10 -4 sodium borohydride aqueous solution, and then continue to react for 20min to obtain 20mL Pd content of 5×10 -5 mol / L Pd nanoparticle sol.

[0029] Preparation of precursor sol: weigh 0.6862g Mg(CH 3 COO) 2 4H 2 O, 2.0698g Ga(CH 3 COO) 3 and 0.1961g Mn(CH 3 COO) 2 4H 2O is placed in the container, then add 50mL of a mi...

Embodiment 2

[0032] Preparation of Mg by Sol-Gel Method 0.999 Ga 2 o 4 :Mn 0.001 2+ ,Au 1×10ˉ2 :

[0033] Preparation of Au nanoparticle sol: Weigh 41.2 mg of chloroauric acid (AuCl 3 ·HCl·4H 2 O) Dissolve in 10mL of deionized water; when the chloroauric acid is completely dissolved, weigh 14mg of sodium citrate and 6mg of cetyltrimethylammonium bromide, and dissolve them into the chloroauric acid aqueous solution under magnetic stirring Medium; Weigh 3.8mg of sodium borohydride and 17.6mg of ascorbic acid and dissolve them in 10mL deionized water respectively to obtain 10mL concentration of 1×10 -2 mol / L sodium borohydride aqueous solution and 10mL concentration is 1×10 -2 mol / L ascorbic acid aqueous solution; in the environment of magnetic stirring, first add 5mL sodium borohydride aqueous solution to the chloroauric acid aqueous solution, stir and react for 5min, then add 5mL1×10 -2 mol / L ascorbic acid aqueous solution, and then continue to react for 30min to obtain 20mL Au con...

Embodiment 3

[0037] Preparation of Mg by Sol-Gel Method 0.995 Ga 2 o 4 :Mn 0.005 2+ , Ag 2.5×10ˉ4 :

[0038] Preparation of Ag nanoparticles sol: weigh 3.4 mg silver nitrate (AgNO 3 ) into 18.4mL of deionized water; when the silver nitrate is completely dissolved, weigh 42mg of sodium citrate and dissolve it in the silver nitrate aqueous solution under magnetic stirring; weigh 5.7mg of sodium borohydride and dissolve it in 10mL of deionized water, Obtain 10mL concentration as 1.5×10 -2 mol / L sodium borohydride aqueous solution; under the environment of magnetic stirring, add 1.6mL1.5×10 -2 mol / L sodium borohydride aqueous solution, and then continue to react for 10min to obtain 20mL Ag content of 1×10 -3 mol / L of Ag nanoparticles sol.

[0039] Preparation of precursor sol: weigh 0.5903g Mg(NO 3 ) 2 , 2.0459g Ga(NO 3 ) 3 and 0.0491g Mn(CH 3 COO) 2 4H 2 O was placed in a container, and then 50mL of a mixed solution of ethanol and water with a volume ratio of 8:1 was added, an...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

The invention belongs to the field of luminescent materials, and discloses a magnesium salt luminescent material and a preparation method thereof, the chemical general formula of the luminescent material is Mg1-xA2O4:Mnx <2+>,My; wherein A is at least one of Al and Ga, M is doping metal nanoparticles and is selected from at least one of Ag, Au, Pt, Pd and Cu, x is greater than 0 and less than or equal to 0.2, y is molar ratio of M to Mg1-xA2O4:Mnx <2+>, and y is greater than 0 and less than or equal to 1*10<-2>. By introduction of M metal nanoparticles, fluorescent powder luminescence can be increased by doping the metal nanoparticles, and luminescence efficiency of the magnesium salt luminescent material, namely magnesium aluminate or magnesium gallate, can be improved greatly in same excitation conditions without change of emitted light wavelength.

Description

technical field [0001] The invention relates to the field of luminescent materials, in particular to a magnesium salt luminescent material and a preparation method thereof. Background technique [0002] Field Emission Display (FED) is a flat panel display technology with great development potential. The working voltage of the field emission display device is lower than that of the cathode ray tube (CRT), usually less than 5kV, but the working current density is relatively large, generally in the range of 10-100μA·cm -2 . Therefore, the requirements for luminescent powders used in field emission displays are higher, such as better chromaticity, higher luminous efficiency at low voltages, and no brightness saturation at high current densities. At present, the research on luminescent powder for field emission display mainly focuses on two aspects: one is to use and improve the existing luminescent powder for cathode ray tube; the other is to search for new luminescent materia...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(China)
IPC IPC(8): C09K11/62C09K11/64
Inventor 周明杰王荣
Owner OCEANS KING LIGHTING SCI&TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products