Process for the manufacture of fluoroelastomers having bromine or lodine atom cure sites
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Examples
example 1
[0065] A 41 liter reactor was charged with a water solution containing 17.5 grams perfluorohexylethylsulfonic acid, 12.9 grams disodium phosphate heptahydrate, and 24,969.6 grams deionized water. The reactor was brought to 80° C. and flushed with nitrogen to remove oxygen and then pressurized to 1.38 MPag with a mixture of 43 wt. % vinylidene fluoride, 3 wt. % tetrafluoroethylene, and 54 wt. % perfluoro(methyl vinyl ether). 30.0 grams of a solution of 1 wt. % ammonium persulfate and 5 wt. % disodium phosphate heptahydrate was added to initiate polymerization. As the reactor pressure dropped, a monomer feed of 55 wt. % vinylidene fluoride, 10 wt. % tetrafluoroethylene, and 35 wt. % per perfluoro(methyl vinyl ether) was added to maintain pressure. After 90 grams of this monomer mixture had been added, an emulsion of a mixture of 1,4-diiodooctafluorobutane and 1,6-diiodododecafluorohexane in a 1% (wt basis) perfluorohexylethylsulfonic acid solution in water, prepared according to Metho...
example 2
[0066] A 41 liter reactor was charged with a water solution containing 17.5 grams perfluorohexylethylsulfonic acid, 12.9 grams disodium phosphate heptahydrate, and 24,969.6 grams deionized water. The reactor was brought to 80° C. and flushed with nitrogen to remove oxygen and then pressurized to 1.38 MPag with a mixture of 43 wt. % vinylidene fluoride, 3 wt. % tetrafluoroethylene, and 54 wt. % perfluoro(methyl vinyl ether). 30.0 grams of a solution of 1 wt. % ammonium persulfate and 5 wt. % disodium phosphate heptahydrate was added to initiate polymerization. As the reactor pressure dropped, a monomer feed of 55 wt. % vinylidene fluoride, 10 wt. % tetrafluoroethylene, and 35 wt. % per perfluoro(methyl vinyl ether) was added to maintain pressure. After 90 grams of this monomer mixture had been added, an emulsion of a mixture of 1,4-diiodooctafluorobutane and 1,6-diiodododecafluorohexane in 1% (wt basis) perfluorohexylethylsulfonic acid solution in water, prepared according to Method ...
example 3
[0070] A 41 liter reactor was charged with a water solution containing 17.5 grams perfluorohexylethylsulfonic acid, 12.9 grams disodium phosphate heptahydrate, and 24,969.6 grams deionized water. The reactor was brought to 80° C. and flushed with nitrogen to remove oxygen and then pressurized to 1.38 MPag with a mixture of 43 wt. % vinylidene fluoride, 3 wt. % tetrafluoroethylene, and 54 wt % perfluoro(methyl vinyl ether). 30.0 grams of a solution of 1 wt. % ammonium persulfate and 5 wt. % disodium phosphate heptahydrate was added to initiate polymerization. As the reactor pressure dropped, a monomer feed of 55 wt. % vinylidene fluoride, 10 wt. % tetrafluoroethylene, and 35 wt. % perfluoro(methyl vinyl ether) was added to maintain pressure. After 90 grams of this mixture had been added, a 5 volume % emulsion of a mixture of 1,4-diiodooctafluorobutane and 1,6-diiodododecafluorohexane in 1 wt. % perfluorohexylethylsulfonic solution, prepared as described in Method B (above), was fed a...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com