Supported non-metallocene catalyst, its preparation method and uses

A non-metallocene, supported technology, applied in the direction of catalyst activation/preparation, chemical instruments and methods, physical/chemical process catalysts, etc., can solve problems such as high cost of silica gel, complicated processing technology, and quality control problems of batch products

Active Publication Date: 2011-05-04
CHINA PETROLEUM & CHEM CORP +1
View PDF33 Cites 71 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

[0010] Even so, the ubiquitous problem of the supported non-metallocene catalysts in the prior art is that using silica gel or a composite containing silica gel as the carrier of the non-metallocene catalyst, although it can be beneficial to the particle type of the polymer finally obtained However, due to the high cost of silica gel suitable for loading, and the need for thermal activation or chemical activation first, the treatment process is complicated
Since the final catalyst composition is not completely controlled according to the amount added, there is a problem of batch product quality control

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Supported non-metallocene catalyst, its preparation method and uses
  • Supported non-metallocene catalyst, its preparation method and uses
  • Supported non-metallocene catalyst, its preparation method and uses

Examples

Experimental program
Comparison scheme
Effect test

preparation example Construction

[0087] According to the present invention, it relates to a preparation method of a supported non-metallocene catalyst, comprising the following steps: dissolving a magnesium compound and a non-metallocene complex in a solvent to obtain a magnesium compound solution; adding Precipitating agent, the step of obtaining the modified carrier; and the step of treating the modified carrier with a chemical treatment agent selected from Group IV B metal compounds to obtain the supported non-metallocene catalyst.

[0088] The steps for obtaining the magnesium compound solution are specifically described below.

[0089] Specifically, the magnesium compound (solid) and the non-metallocene complex are dissolved in an appropriate solvent (ie, a solvent for dissolving the magnesium compound), thereby obtaining the magnesium compound solution.

[0090] As the solvent, for example, C 6-12 Aromatic hydrocarbons, halogenated C 6-12 Solvents such as aromatic hydrocarbons, esters and ethers. Spe...

Embodiment 1

[0294] The magnesium compound adopts anhydrous magnesium chloride, the solvent for dissolving the magnesium compound and the non-metallocene complex adopts tetrahydrofuran, and the chemical treatment agent adopts titanium tetrachloride. The non-metallocene complex adopts the structure compound of.

[0295] Weigh 5g of anhydrous magnesium chloride and non-metallocene complexes, add tetrahydrofuran solvent and dissolve completely at room temperature, stir for 2 hours, add precipitant hexane to make it precipitate, filter, wash 2 times, the amount of precipitant each time is the same as that added before The same amount was uniformly heated to 60°C and vacuum-dried to obtain a modified carrier.

[0296] Then add 60ml of hexane to the modified carrier, add titanium tetrachloride dropwise for 30 minutes under stirring conditions, stir and react at 60°C for 4 hours, filter, wash with hexane twice, and use 60ml of hexane each time, Vacuum drying at room temperature to obtain a sup...

Embodiment 1-1

[0300] Basically the same as Example 1, but with the following changes:

[0301] Non-metallocene complexes using The solvent for dissolving magnesium compounds and non-metallocene complexes was changed to toluene, the precipitation agent was changed to cyclohexane, and the chemical treatment agent was changed to zirconium tetrachloride (ZrCl 4 ).

[0302] Wherein the ratio is, the ratio of magnesium compound to toluene is 1mol: 150ml; the molar ratio of magnesium compound to non-metallocene complex is 1: 0.15; the volume ratio of precipitant to dissolved magnesium compound and non-metallocene complex is 1 : 2; the molar ratio of the magnesium compound to the chemical treatment agent is 1: 0.20.

[0303] Supported non-metallocene catalysts are designated CAT-1-1.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The invention relates to a supported non-metallocene catalyst and its preparation method. The supported non-metallocene catalyst is characterized by simple preparation method, flexible polymerization activity etc. In addition, non-metallocene complexes in the catalyst cooperate with the chemical disposal agent to enhance the activity. The invention also relates to the application of the supportednon-metallocene catalyst in alkene homopolymerization/copolymerization. Less amount of co-catalyst is required in use compared with the prior art.

Description

technical field [0001] The present invention relates to a non-metallocene catalyst. Specifically, the present invention relates to a supported non-metallocene catalyst, its preparation method and its application in olefin homopolymerization / copolymerization. Background technique [0002] The non-metallocene catalysts that appeared in the middle and late 1990s, also known as post-metallocene catalysts, the central atoms of the main catalysts include almost all transition metal elements, which have reached or even surpassed metallocene catalysts in some performance aspects, becoming The fourth generation of olefin polymerization catalysts after Ziegler, Ziegler-Natta and metallocene catalysts. The polyolefin product produced by this type of catalyst has excellent performance and low production cost. The coordination atoms of non-metallocene catalysts are oxygen, nitrogen, sulfur and phosphorus, and do not contain cyclopentadiene groups or their derivative groups, such as ind...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(China)
IPC IPC(8): B01J31/26B01J31/22B01J31/24B01J37/00C08F10/00C08F10/02C08F4/654
Inventor 任鸿平李传峰姚小利郭峰马忠林陈海滨汪开秀刘经伟王亚明
Owner CHINA PETROLEUM & CHEM CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products