Ce and Y codoped modified sealing-in microcrystalline glass

A technology of glass-ceramics and co-doping, which is applied in the field of solid oxide fuel cells, can solve the problems of damaging the insulation of sealed glass-ceramics, improve high-temperature chemical stability, reduce sealing temperature, and inhibit harmful reactions Effect

Inactive Publication Date: 2015-09-02
FUZHOU UNIV
View PDF3 Cites 8 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

However, the recent work of our research group found that adding a small amount of CeO 2 The sealing glass will precipitate CeO in the SOFC operating environment 2 even Ce 2 o 3 and other conductive phases, significantly destroying the insulation of the sealed glass-ceramic

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Ce and Y codoped modified sealing-in microcrystalline glass
  • Ce and Y codoped modified sealing-in microcrystalline glass
  • Ce and Y codoped modified sealing-in microcrystalline glass

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0031] Embodiment 1: Preparation and sealing of materials

[0032] According to the ratio of each component in Table 1, weigh a certain amount of analytically pure raw materials (CaO, SrO, SiO 2 、Al 2 o 3 , B 2 o 3 , CeO 2 and Y 2 o 3 ), use a ball mill for 24 hours to mix evenly; then put the powder into a platinum crucible, place it in the air atmosphere of a box-type resistance furnace, heat it to 1400°C at 3°C / min, and keep it warm for 1 hour; then, take out the crucible, put The melt is poured into deionized water for rapid cooling, and dried to obtain fragments of the glass melt; ground and passed through a 100-mesh sieve to obtain glass powder. Mix glass powder with polyvinyl alcohol, fish oil, ethanol and toluene (80%, 2%, 1%, 10%, 7% by weight) to form a slurry, and disperse evenly in a ball mill; tape casting, natural Dry, then cut into the embryo body of the desired shape; place the embryo body on the part to be sealed, heat up in an electric furnace at a ra...

Embodiment 2

[0033] Embodiment 2: Preparation and sealing of materials

[0034] According to the ratio of each component in Table 1, weigh a certain amount of analytically pure raw materials (CaO, SrO, SiO 2 、Al 2 o 3 , B 2 o 3 , Y 2 o 3), use a ball mill for 24 hours to mix evenly; then put the powder into a platinum crucible, place it in the air atmosphere of a box-type resistance furnace, heat it to 1400°C at 3°C / min, and keep it warm for 1 hour; then, take out the crucible, put The melt is poured into deionized water for rapid cooling, and dried to obtain fragments of the glass melt; ground and passed through a 100-mesh sieve to obtain glass powder. Mix glass powder with methylcellulose, polyvinyl alcohol, n-butanol and acetone (82%, 2%, 2%, 8%, 6% by weight) to form a slurry, and disperse evenly in a ball mill; Stretching, drying naturally, and then cutting the embryo body into the desired shape; placing the embryo body on the part to be sealed, raising the temperature in an el...

Embodiment 3

[0035] Embodiment 3: Preparation and sealing of materials

[0036] According to the ratio of each component in Table 1, weigh a certain amount of analytically pure raw materials (CaO, SrO, SiO 2 、Al 2 o 3 , B 2 o 3 , CeO 2 and Y 2 o 3 ), use a ball mill for 24 hours to mix evenly; then put the powder into a platinum crucible, place it in the air atmosphere of a box-type resistance furnace, heat it to 1400°C at 3°C / min, and keep it warm for 1 hour; then, take out the crucible, put The melt is poured into deionized water for rapid cooling, and dried to obtain fragments of the glass melt; ground and passed through a 100-mesh sieve to obtain glass powder. Mix glass powder with epoxy resin, polyacrylamide, isopropanol and toluene (84%, 1.5%, 0.5%, 9%, 5% by weight) to form a slurry, and disperse evenly in a ball mill; casting Shape, dry naturally, and then cut into the desired shape of the embryo body; place the embryo body on the part to be sealed, heat up at a rate of 2°C...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The invention discloses Ce and Y codoped modified sealing-in microcrystalline glass, which comprises the following ingredients through being metered by mole percentage: 0 to 10 percent of B2O3, 0 to 10 percent of Al2O3, 30 to 40 percent of SiO2, 20 to 40 percent of MO (one or several materials from MgO, CaO, SrO and BaO) and 15 to 40 percent of RO (CeO2 and Y2O3). The Ce and Y codoped modified sealing-in microcrystalline glass has the advantages that preparing raw materials are simple and can be easily obtained, the process is stable, the cost is low, the process is simple and feasible, and the practical and industrialized conditions are reached.

Description

technical field [0001] The invention belongs to the field of solid oxide fuel cells, and in particular relates to Ce and Y co-doped modified sealing glass-ceramics. Background technique [0002] Solid oxide fuel cell (SOFC) adopts solid oxide (ceramic) electrolyte, operates at high temperature, has high power generation efficiency, low material cost, and is compatible with various fuels (such as methane, gas, methanol, alcohol, liquefied petroleum gas, etc. )Etc. However, the main problem facing the development of SOFC is how to effectively isolate and seal the fuel gas and oxidant gas at high temperatures. Due to the high operating temperature of the battery (700-750°C), the selection of suitable sealing materials and sealing technologies has become the key to restricting the development of planar SOFCs. The main advantage of the solid oxide fuel cell is the high energy conversion rate, but the insufficient insulation of the sealing material is prone to leakage, which wil...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(China)
IPC IPC(8): C03C8/24C03C10/00
Inventor 张腾刘鸿琳张琪赵丹丹颜佳佳杜欣航魏颖李巍婷唐电
Owner FUZHOU UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products