Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

2153 results about "Photochromism" patented technology

Photochromism is the reversible transformation of a chemical species between two forms by the absorption of electromagnetic radiation (photoisomerization), where the two forms have different absorption spectra. Trivially, this can be described as a reversible change of colour upon exposure to light.

Organic light emitting display (OLED) and its method of fabrication

An Organic Light Emitting Display (OLED) and its method of fabrication includes: a transparent substrate; a photochromatic layer formed on a first surface of the transparent substrate; at least one transparent Thin Film Transistor (TFT) formed on a first surface of the transparent substrate, and an organic light emitting device formed on and electrically connected to the transparent TFT.
Owner:SAMSUNG DISPLAY CO LTD

Variable transmittance optical filter and uses thereof

Variable transmittance optical filters capable of transitioning from a light state to a dark state on exposure to UV radiation and from a dark state to a light state with application of an electric voltage are provided. The optical filters comprise a switching material that comprises one or more chromophores that have electrochromic and photochromic properties.
Owner:SOLUTIA CANADA INC

Polarizing, photochromic devices and methods of making the same

Various embodiments disclosed herein relate to optical elements comprising an at least partial coating having a first state and a second state connected to at least a portion of a substrate, the at least partial coating being adapted to switch from the first state to the second state in response to at least actinic radiation, to revert back to the first state in response to thermal energy, and to linearly polarize at least transmitted radiation in at least one of the first state and the second state. Other embodiments relate to optical elements comprising a substrate and at least one at least partially aligned photochromic-dichroic compound connected to at least a portion of the substrate and having an average absorption ratio greater than 2.3 in the activated state as determined according to CELL METHOD. Still other embodiments relate to security devices, liquid crystal cells and methods of making the same.
Owner:TRANSITIONS OPTICAL INC

Photochromic compounds

Various non-limiting embodiments disclosed herein relate generally to photochromic compounds, which may be thermally reversible or non-thermally reversible, and articles made therefrom. Other non-limiting embodiments relate to photochromic-dichroic compounds, which may be thermally reversible or non-thermally reversible, and articles made therefrom. For example, one non-limiting embodiment provides a thermally reversible, photochromic compound adapted to have at least a first state and a second state, wherein the thermally reversible, photochromic compound has an average absorption ratio greater than 2.3 in at least one state as determined according to CELL METHOD. Another non-limiting embodiment provides a photochromic compound comprising: (a) at least one photochromic group chosen from a pyran, an oxazine, and a fulgide; and (b) at least one lengthening agent L attached to the at least one photochromic group and represented by the formula —[S1]c-[Q1-[S2]d]d′-[Q2-[S3]e]e′-[Q3-[S4]f]f′—S5—P, which is described herein.
Owner:TRANSITIONS OPTICAL INC

Multi-junction photovoltaic device with microcrystalline I-layer

A photovoltaic element of the present invention is a photovoltaic element having a plurality of pin junctions each formed of a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer each comprising a non-single-crystal material comprising a Group IVA element as a principal component, the photovoltaic element having a first pin junction comprising microcrystal silicon carbide (hereinafter referred to as microcrystal SiC) as a principal component of the i-type semiconductor layer and a second pin junction comprising microcrystal silicon (hereinafter referred to as microcrystal Si) as a principal component of the i-type semiconductor layer, wherein the first pin junction is provided closer to the light incidence side than the second pin junction. Provided thereby are a low cost photovoltaic element which exhibits little photodeterioration and with a high photoelectric conversion efficiency, and production method of the photovoltaic element capable of forming i-type microcrystal silicon and microcrystal SiC at a practical deposition rate.
Owner:CANON KK

Photochromic articles with reduced temperature dependency and methods for preparation

Described are photochromic articles that include a substrate, a temperature dependent reducing amount of at least one organic photochromic material (b) that changes from more absorbing to less absorbing of radiation in its activating spectral absorbance as the temperature increases from 10° C. to 35° C. and at least one other photochromic material (c) that is different from photochromic material (b). In the article, photochromic material (b) is interposed between photochromic material (c) and a source of activating radiation. The photochromic article demonstrates a more consistent photochromic response, for example, an optical density response loss of 50 percent or less over a temperature range of from 10° C. to 35° C. as measured in the Photochromic Temperature Dependence Test. Methods for producing the aforedescribed articles are also disclosed.
Owner:TRANSITIONS OPTICAL INC

Panoramic camera

An improved camera for the acquisition of panoramic images is disclosed. The camera comprises a convex photochromic reflector directed towards an image capture element. Multiple incoming light sensors around the perimeter of the camera detect strong incoming light and cause the activation of a corresponding UV light. The UV light in turn activates the photochromic effect on a particular region of the photochromic reflector that corresponds to an area of strong incident light. The photochromic reflector then darkens in that area, providing compensation for a scene that has a wide range of lighting conditions. Therefore, the camera compensates for strong lighting indoors as well as outdoors.
Owner:GLATT OTTO GREGORY

Lens forming systems and methods

Described herein are methods and systems for forming lenses. In one embodiment, systems for use in forming eyeglass lenses are described that include one or more LED lights. The LED lights may be used to cure lens forming compositions and coating compositions. In other embodiments, methods of determining an appropriate spacing for mold members are described. In other embodiments, methods of forming anti-reflective coatings, photochromic coatings, hardcoat coatings, and combinations thereof, on eyeglass lenses, are described.
Owner:VISION DYNAMICS

Photochromic article

Describes an article, e.g., an optical article such as a lens, in which the article includes (a) a rigid substrate, e.g., a transparent ophthalmic substrate, such as a thermoset or thermoplastic substrate, having at least one surface suitable for accommodating a photochromic coating, and (b) a transparent photochromic coating comprising dendritic polymeric acrylate, e.g., polyester acrylate, on at least a portion of said surface of the substrate, the coating comprising a photochromic amount of at least one photochromic material, e.g., an organic photochromic material.
Owner:TRANSITIONS OPTICAL INC

Photochromic naphtopyrane colorants, method for the production and use thereof, photochromic object

PCT No. PCT / DE98 / 02820 Sec. 371 Date May 21, 1999 Sec. 102(e) Date May 21, 1999 PCT Filed Sep. 22, 1998 PCT Pub. No. WO99 / 15518 PCT Pub. Date Apr. 1, 1999What is described here are photochromic naphthopyrane dyes with different substituents whose properties can be set by controlled selection of the substituents. In this manner it is possible to take an influence on the migration characteristics, the absorption characteristics and the brightening rate and kinetics. The inventive compounds display good darkening and brightening properties at a very good service life. The invention excels itself by the fact that a method is made available which is substantially improved over prior art, in addition to the surprising influence on specific properties of the inventive compounds. The described compounds are suitable for application in synthetic materials of any kind. A photochromic object is also the subject matter of the invention, which comprises one or several photochromic naphthopyrane dyes as well as at least one polymer material, with the photochromic object being producible by mass-dyeing or superficial dyeing.
Owner:RODENSTOCK GMBH

Photochromic film material

The invention is directed to a photochromic material that filters, from solar radiation, near infrared radiation and sufficient portions of ultraviolet radiation while transmitting actinic radiation in the wavelength range of about 341±5 nm. The light-transmitting photochromic material provides light and heat stability to achieve a longer useful life. This photochromic material is preferably incorporated in a multilayered structure with constituents provided on or contained within one or more layers to enhance the resistance to light fatigue.
Owner:LINTEC CORP

Solid-state image capturing device and electronic device

A solid-state image capturing device includes: a semiconductor substrate having a photosensitive surface including a matrix of pixels as respective photoelectric converters; and a photochromic film disposed in a light path through which light is applied to each of the photoelectric converters, the photochromic film being made of a photochromic material having a light transmittance variable depending on the intensity of applied light in a predetermined wavelength range; wherein the light transmittance has a half-value period shorter than one frame during which pixel signals generated by the pixels are read from all the pixels.
Owner:SONY SEMICON SOLUTIONS CORP

Photochromic optical article

A photochromic optical article comprises a substrate, and a photochromic coating coated on an outer surface of the substrate and having at least two photochromic layers. Each of the photochromic layers has a composition that contains a carrier and at least one photochromic dye. The compositions of the photochromic layers are different from each other.
Owner:DARWIN OPTICAL

Image capture module

An image capture module includes an image sensor and a photochromic glass plate. The image sensor includes a photosensitive area. The photochromic glass plate is positioned in front of the photosensitive area, adjusting light transmittance therethrough according to current ambient light conditions, thereby adjusting exposure value of the image sensor. In addition to the image sensor and the photochromic glass plate, the image capture module may further include a lens unit and a packaging substrate. The substrate defines a cavity therein, in which the image sensor is disposed. The photochromic glass plate seals the cavity. The lens unit is disposed on the photochromic glass plate. During image capture, light enters and is transmitted through the lens unit and the photochromic glass plate, forming an image on the photosensitive area of the image sensor. The image sensor converts the visual image into digital data.
Owner:HON HAI PRECISION IND CO LTD

Photochromic materials demonstrating improved fade rates

Various photochromic materials are provided that are essentially free of polymerizable unsaturated groups, and comprise: a) an indeno[2′,3′:3,4]naphtho[1,2-b]pyran; and b) an electron-withdrawing, non-conjugating group bonded at the 11-position of the indeno[2′,3′:3,4]naphtho[1,2-b]pyran. Alternative embodiments include various substituents at other positions of the indeno[2′,3′:3,4]naphtho[1,2-b]pyran. Also provided are photochromic articles including a substrate and one of the above photochromic materials, in contact with at least a portion of the substrate.
Owner:TRANSITIONS OPTICAL INC +1

Diaryl-2H-naphthopyrans

Photochromic diaryl-2H-naphthopyran structures, which dye photochromically well at room temperature, lighten up quickly when incorporated into ophthalmic lenses, possess longevity, and due to their spacial structures, have a reduced tendency of the molecules to migrate in plastics.
Owner:OPTISCHE WERKE G RODENSTOCK

Organic light emitting display (OLED) and its method of fabrication

An Organic Light Emitting Display (OLED) and its method of fabrication includes: a transparent substrate; a photochromatic layer formed on a first surface of the transparent substrate; at least one transparent Thin Film Transistor (TFT) formed on a first surface of the transparent substrate, and an organic light emitting device formed on and electrically connected to the transparent TFT.
Owner:SAMSUNG DISPLAY CO LTD

Device exhibiting photo-induced dichroism for adaptive anti-glare vision protection

A device (100, 140, 150) for differentially absorbing light, depending on the state of linear polarization of the light, is disclosed. This polarizing effect is induced and controllable by the level of ambient light impinging on the device. The device (100, 140) may be used as an anti-glare vision protection device which selectively absorbs specularly reflected sunlight in brightly lit environments while permitting all light to pass in dimly lit environments. The device (100) includes a carrying medium which may be a film (142) or opposed substrates (112) that are sealed. A film or the opposed substrates carry a mixture (120) of fluid material (124) and photochromic dyestuffs (122), wherein the photochromic material is activated upon the detection of ultraviolet light so as to absorb some of the light and wherein the energization of the photochromic material effects the material so as to simultaneously selectively absorb the specularly reflected sunlight. The material (124) may be any fluid that dissolves the photochromic dyestuff material (122). The fluid is preferably a liquid crystal material such as nematic or chiral nematic. Alternatively, the material (124) may be a polymer liquid crystal. The device (150) may allow for electrical control of the absorptive properties.
Owner:ALPHAMICRON INC

Methods for preparing composite photochromic ophthalmic lenses

A method of manufacturing a composite photochromic ophthalmic lens having an index of refraction of at least 1.49 is disclosed. The method comprises providing against a front portion of a mold, a first ophthalmic lens-forming composition including a polymerizable monomer, oligomer, or polymer and a photochromic compound; filling a rear portion of the mold with a second ophthalmic lens-forming composition, sufficiently different from the first ophthalmic lens-forming composition such that a distinct phase boundary results between the two compositions after complete curing of the two compositions, the second ophthalmic lens-forming composition including a polymerizable monomer, oligomer or polymer that is different from the monomer, oligomer or polymer of the first ophthalmic lens-forming composition, such that the second ophthalmic lens-forming composition is in contact with the first lens-forming composition, wherein either the first or second ophthalmic lens-forming composition is gelled before adding the other ophthalmic lens-forming composition, in an ungelled state, to the mold; and curing the first and second ophthalmic lens-forming compositions simultaneously, while the first and second ophthalmic lens-forming compositions are in intimate contact.
Owner:SIGNET ARMORLITE INC

Light control plastic lens, coated sheet-like light control element for the lens production, and a production method for light control plastic lens

A light control plastic lens, a sheet-like light control element, and a production method for light control plastic lenses are provided. More specifically, a light control plastic lens, such as a high index polarizing property and / or a photochromic plastic lens that is made by cast polymerization is provided. Also provided are a sheet-like light control element for use in the production of the lenses, as well as a production method of such light control plastic lenses. The light control plastic lens has a sheet-like light control element including at least a light control sheet. In particular, the light control plast lens the sheet-like light control element, a curable resin layer laminated on at least one surface of the sheet-like light control element, and a polymerizable lens resin layer laminated at least on the curable resin layer.
Owner:MGC FILSHEET CO LTD +1

Photochromic naphthopyran compounds: compositions and articles containing those naphthopyran compounds

InactiveUS7008568B2High sensitivity to solar radiationEliminate needOrganic chemistryDiffusing elementsCompound aSulfur
A photochromic naphthopyran displays good color distribution when the naphthopyran has a central nucleus of the formula: wherein F is a 5-member, 6-member, or 7-member heterocyclic ring group having only one heteroatom, the heteroatom selected from the group consisting of oxygen, sulfur, and nitrogen, the 2,3 or 3,2 positions of the heterocyclic ring fused to the g, h, or i side;R1 and R2 are the atoms or groups providing photochromic properties to the naphthopyran.
Owner:HOYA OPTICAL LABS OF AMERICA INC

Polarized eyewear

An article of polarized eyewear has a lens, with a first substrate lens material transparent to visible light and a pattern of elongated structures formed from at least a second material having a complex index of refraction, wherein the second material is deposited directly onto a curved surface of the first substrate lens material. A pitch between adjacent elongated structures is less than 300 nm and a width of each elongated structure is less than 90% of the pitch. A photochromic material is deposited onto the polarized eyewear.
Owner:SOL GRID

Curable composition, cured article obtained therefrom, and photochromic optical material and process for producing the same

A curable composition which provides a coating layer having high adhesion to a substrate and a hard coat layer and extremely excellent photochromic properties such as high color development intensity, high fading speed and excellent durability. This composition comprises (1) 100 parts by weight of radically polymerizable monomers including a silyl monomer such as gamma-methacryloyloxypropyl trimethoxysilane and / or an isocyanate monomer such as 2-isocyanatoethoxy methacrylate, (2) 0.01 to 20 parts by weight of an amine compound and (3) 0.01 to 20 parts by weight of a photochromic compound. A photochromic optical material having excellent adhesion between a photochromic coating layer and a resin substrate and obtained by using this composition as a coating material and a process for producing the photochromic optical material.
Owner:TOKUYAMA CORP

Reimageable medium

An reimageable medium composed of: a substrate; and a photochromic material, wherein the medium is capable of exhibiting a color contrast and an absence of the color contrast, wherein the medium has a characteristic that when the medium exhibits the absence of the color contrast and is then exposed to an imaging light corresponding to a predetermined image to result in an exposed region and a non-exposed region, the color contrast is present between the exposed region and the non-exposed region to form a temporary image corresponding to the predetermined image that is visible for a visible time, wherein the medium has a characteristic that when the temporary image is exposed to an indoor ambient condition for an image erasing time, the color contrast changes to the absence of the color contrast to erase the temporary image in all of the following: (i) when the indoor ambient condition includes darkness at ambient temperature, (ii) when the indoor ambient condition includes indoor ambient light at ambient temperature, and (iii) when the indoor ambient condition includes both the darkness at ambient temperature and the indoor ambient light at ambient temperature, and wherein the medium is capable of undergoing multiple cycles of temporary image formation and temporary image erasure.
Owner:XEROX CORP

Inorganic/block copolymer-dye composites and dye doped mesoporous materials for optical and sensing applications

InactiveUS6952436B2High dye doping concentrationEnhancing dye dispersionActive medium materialOptical light guidesFiberMesoporous material
A method for preparing transparent mesostructured inorganic / block-copolymer composites or inorganic porous solids containing optically responsive species with selective optical, optoelectronic, and sensing properties resulting therefrom. Mesoscopically organized inorganic / block copolymer composites doped with dyes or complexes are prepared for use as optical hosts, chemical / physical / biological sensors, photochromic materials, optical waveguides, tunable solid-state lasers, or optoelectronic devices. The materials can be processed into a variety of different shapes, such as films, fibers, monoliths, for novel optical and sensing applications.
Owner:RGT UNIV OF CALIFORNIA

Redox-switchable materials

The invention relates to redox-switchable material comprising a redox-active moiety adsorbed, bonded or both, to a semiconductor material. Among the preferred redox-active moieties disclosed herein are ferrocenes, acridines, and quinones though any such moiety may be employed. The redox-switchable material of this invention may be used to selectively remove one or more selected solutes from an aqueous solution wherein adsorption / complexation of the solute is influenced by the oxidation state of the redox-active moiety. In an alternative embodiment, inclusion moieties that are covalently bound to the redox-active moiety are employed to achieve selective complexation of the desired solute. Other possible applications of the disclosed materials are photoerasable writing media, electrochromic or photochromic materials, catalysis, and solar energy storage.
Owner:BOARD OF RGT NEVADA SYST OF HIGHER EDUCATION ON BEHALF OF THE UNIV OF NEVADA RENO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products