Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Conductive polymer materials and methods for their manufacture and use

a polymer material and polymer technology, applied in the direction of non-metal conductors, magnetic circuits characterised by magnetic materials, conductors, etc., can solve the problems of low critical temperature of most metals, severe limits to the application of metal superconductors in room temperature applications, and substantial power losses, etc., to achieve low resistance electrical current, limited space and energy consumption, and high performan

Inactive Publication Date: 2005-03-03
TALROZE RAISA V +1
View PDF6 Cites 4 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The polymer-based superpolarons exhibit conductivity several orders of magnitude higher than traditional metals, reducing energy losses and enabling efficient electrical transmission and storage without the need for cryogenic cooling.

Problems solved by technology

However, the resistance of these materials is sufficiently high as to require significant energy for their operation, and their use results in substantial power losses.
Unfortunately, the critical temperatures for most metals is very low, typically a few Kelvins (K).
This low temperature requirement severely limits the application of metal superconductors for room temperature applications.
Another significant advance occurred in 1987 with the discovery that certain ceramic oxides can become superconductors below critical temperatures of about 100 K. Although the critical temperature is substantially higher for ceramic oxide superconductors than for metal conductors, the temperatures are so low as to make room temperature applications expensive and difficult.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Conductive polymer materials and methods for their manufacture and use
  • Conductive polymer materials and methods for their manufacture and use
  • Conductive polymer materials and methods for their manufacture and use

Examples

Experimental program
Comparison scheme
Effect test

examples

In the examples that follow, the organic molecules by themselves are not highly conductive. Rather, the low and high molecular weight molecules remain in an insulating state. Instead, electron threads formed within such organic medium can be superconducting.

example no 1

Superconducting Nanowires in High Viscosity Poly(Dimethyl-Amino-Ethyl-Methacrylate)

To form a high viscosity medium containing superconducting nanostructures made in poly(dimethyl-amino-ethyl-methacrylate), the following series of steps were carried out. Each step comprises individual sub-steps as indicated.

Step 1: Forming a Liquid Medium Comprising a Macromolecular Substance and a Dopant

(a) A two gram sample of poly(dimethyl-amino-ethyl-methacrylate) having a mean molecular weight of 100,000 atomic mass units (amu) was dissolved in 8 grams of the toluene to create a solution having about 20 weight % polymer. This solution was transparent and had no color. Toluene has very little, if any, polarity. The polymer has both amino groups and ester groups each having high dipole moments. One drop of this solution was taken to analyze its magnetic properties.

(b) A small open flask containing the solution formed in step (a) was heated to a temperature of 65-70° C. for 15 min. During t...

example no

Superconducting Nanowires in Other Copolymerized Polymers

In Example No: 4, the co-polymer used comprises links of dimethylaminoethyl-methacrylate (or dimethyl aminoethyl-acrylate) and links of hexylacrylate. The formation of nanowires takes place even if the content of hexylacrylate links exceeds 80%.

The material obtained in Example No: 4 differs from previous ones in two respects: a) it is amorphous, and b) At Q>80% it has a glass transition temperature below room temperature. Therefore, at room temperature it is a liquid, not a solid, and therefore has no Young's modulus.

A feature of the manufacture of certain quantum nanowires made at low concentrations (<5 weight %) of macromolecular substances in solution can be that the concentration of free electrons generated may not enough to form numbers of quantum nanowires sufficient to be detected with a magnetometer.

Therefore, at least one of the following methods can be used to increase the concentration of free electrons...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
ionization potentialaaaaaaaaaa
critical temperatureaaaaaaaaaa
conductivityaaaaaaaaaa
Login to View More

Abstract

Quantum nanowires are produced in a medium comprising ions, dopants and free electrons, wherein the free electrons are solvated by complexes of ions and dopants. Electrical conductivity of the quantum nanowires can be higher than for conventional metal conductors. Quantum nanowires can be prepared in linear or circular form, and can be used to manufacture electrical components including transistors, sensors, motors and other nanoscale passive or active devices. Nanoscale devices can be made in liquid, semisolid, or solid media. Methods are provided for the manufacture of quantum nanowires and devices made therefrom. The devices can be used in the manufacture of computers, electronic circuits, biological implants and other products.

Description

BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to conductive polymer materials, and to conductive polymer materials having organic ions, a dopant and solvated free electrons. This invention also relates to conductive polymer materials used in microelectronics, optoelectronics and biomedicine. 2. Description of Related Art Electrical conductors play fundamental roles in many aspects of modern technology. Technological advances in computers relies upon conductors that have low resistance. The energy required to move electrical current through a conductor is related to the resistance. To maintain operating temperatures, resistive energy losses, including heat, must be dissipated by devices containing conductors. To minimize the energy required and the energy dissipation necessary, it is desirable to provide conductors having very high conductivity and low resistance. Because many applications occur at temperatures near room temperature, it is especiall...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): H01B1/20C08F8/44H01B1/12H01B13/00H01L51/00H02K1/02H02K3/02H02N11/00H10N60/85
CPCB82Y10/00C08F8/44H01B1/122H01L39/121H01L51/0595Y10S977/762H02K3/02H02N11/006H02K1/02C08F120/34H10N60/851H10K10/701H01B1/12
Inventor TALROZE, RAISA V.GRIGOROV, LEONID N.
Owner TALROZE RAISA V
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products