Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Method for formulating large diameter synthetic membrane vesicles

Inactive Publication Date: 2011-10-13
PACIRA PHARMA INC
View PDF14 Cites 69 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0019]Some embodiments provide a process for making multivesicular liposomes using the atomizing nozzle apparatus as disclosed and described herein, comprising applying a first liquid to the first fluid conduit, wherein the first liquid comprises an organic solvent, applying a second liquid to the second fluid conduit, applying a pressurized gas to the third fluid conduit to provide atomized droplets, wherein the pressurized gas exiting the third fluid conduit exit orifice impinges the liquid exiting the fluid contacting chamber exit orifice, and removing the organic solvent from the atomized droplets, wherein less than 4000 ppm of the organic solvent remains in the atomized droplets. In some embodiments, the first liquid is an emulsion comprised of a discontinuous aqueous phase, and a continuous organic phase comprising the organic solvent. In some embodiments, the organic solvent is methylene chloride. In some embodiments, the continuous organic phase further comprises a therapeutic agent. In some embodiments, the therapeutic agent is bupivacaine or a salt thereof. In some embodiments, the second liquid applied to the second fluid conduit is an aqueous solution. In some embodiments, the aqueous solution further comprises dextrose and lysine. In some embodiments, the gas is a sterilized gas. In some embodiments, the gas is nitrogen. In some embodiments, the process further comprises introducing atomized droplets to an evaporation apparatus as disclosed and described herein; introducing a pressurized carrier gas tangentially to the circular wall into the solvent removal vessel through the carrier gas entrance orifice; removing a solvent removal gas wherein the solvent removal gas removes greater than 90% of the organic solvent in the atomized droplets resulting in formation of multivesicular liposomes. In some embodiments, the carrier gas is heated and humidified. In some embodiments, the process further comprises spraying a wall rinse solution into the solvent removal vessel using a rinse nozzle, wherein the wall rinse solution prevents build-up of particles in the evaporation apparatus. In some embodiments, the atomized droplets contain organic solvent in the range of from about 400 ppm to about 3500 ppm.

Problems solved by technology

Large scale methods of manufacturing large diameter synthetic membrane vesicles, such as multivesicular liposomes, often require large amounts of solvents, time sensitive steps and concentration adjustment of the final product under sterile conditions.
In addition, current methods of manufacturing large diameter synthetic membrane vesicles, such as multivesicular liposomes on a commercial scale, require significant commitments in manufacturing space, cost, and time.
As such, developing stable multivesicular liposome formulations containing a therapeutic agent in a cost effective and timely manner remains an ongoing challenge.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method for formulating large diameter synthetic membrane vesicles
  • Method for formulating large diameter synthetic membrane vesicles
  • Method for formulating large diameter synthetic membrane vesicles

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0319]The following is an example utilizing the process parameters and steps of the devices depicted in the Figures. The three fluids applied to the atomizing nozzle (FIG. 1A and FIG. 1B, component 75; FIG. 3A, component 310; FIG. 7, component 7510) as part of the process of forming multivesicular liposomes have the following compositions per liter.

[0320]The first fluid (FIG. 3A-3L, component 3115; FIG. 5, component 5115; FIG. 7, component 7115) was a first liquid made up of the first component, the first component having two components: an organic phase and a first aqueous phase which are emulsified with equal volumes. The organic phase was composed of 1,2-dierucoyl-sn-glycero-3-phosphocholine (17.78 g), 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (1.056 g), cholesterol (10.34 g), tricaprylin (4.32 g), water (0.70 g) and methylene chloride (quantity sufficient to make 1 L total volume of the organic phase. The first aqueous phase was composed of 0.2 molar (200 mM) phosphoric acid ...

example 2

Preparation of First Component

[0333]The recirculation loop connected to the high-shear mixer (FIG. 1A and FIG. 1B, component 25; FIG. 2, component 2130) (Ross Model HSM-703XS-20 Sanitary Inline High Shear Mixer equipped with a 3″ diameter X-5 Series rotor / stator for operation to 14,400 rpm. (11,300 feet / min. tip speed) with gap ring #3) was primed with methylene chloride to ensure that all air was removed from the high-shear mixer. The jacket of the heat exchanger (FIG. 1A and FIG. 1B, component 30; FIG. 2, component 2170) was supplied with 5° C. coolant (water+50% ethylene glycol). The mixer seal lubricant tank, filled with water, was also cooled with 5° C. coolant (water+50% ethylene glycol). The high-shear mixer was started at a setting of 25 Hz (6,000 rpm), 30 Hz approx. (7,200 rpm) or 35 Hz (8,400 rpm).

[0334]After the high shear mixer was primed with methylene chloride, the organic phase and first aqueous phase peristaltic pumps (FIG. 1A and FIG. 1B, components 12 and 2, respec...

example 3

Heat Treatment of MVL Suspension

[0342]The system of FIG. 1B was used with the humidified rotation gas (N2) supplied by combination electric heater and tube-in shell heat exchanger as described for FIG. 1A, component 90. The system was equilibrated for 10 minutes and a 1,000 ml sample of MVL suspension, exiting the drain port (FIG. 1B, component 130) of the solvent removal vessel 50, was collected. The MVL sample was divided into two samples of 500 mL each. The first 500 mL MVL sample was heat treated as follows. The heat treatment was performed by rapidly adding 750 mL of 100° C. dextrose solution to the first sample to raise the mixture temperature up to approximately 63° C. After 30 seconds, 1,750 mL of +5° C. saline was rapidly added to lower the temperature of the mixture to near room temperature (35° C. or below). The sample volume was now 3,000 mL. The second 500 mL multivesicular liposomes sample was not heat treated. The second sample was diluted with the same volumes of dex...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Temperatureaaaaaaaaaa
Temperatureaaaaaaaaaa
Fractionaaaaaaaaaa
Login to View More

Abstract

The present invention generally relates to the field of pharmaceutical sciences. More specifically, the present invention includes apparatus and devices for the preparation of pharmaceutical formulations containing large diameter synthetic membrane vesicles, such as multivesicular liposomes, methods for preparing such formulations, and the use of specific formulations for therapeutic treatment of subjects in need thereof. Formation and use of the pharmaceutical formulations containing large diameter synthetic membrane vesicles produced by using the apparatus and devices for therapeutic treatment of subjects in need thereof is also contemplated.

Description

RELATED APPLICATIONS[0001]This application claims the benefit of U.S. Provisional Application No. 61 / 322,814, filed Apr. 9, 2010, the disclosure of which is incorporated herein by reference in its entirety.FIELD OF THE INVENTION[0002]The present invention generally relates to the field of pharmaceutical sciences. More specifically, the present invention relates to pharmaceutical formulations containing large diameter synthetic membrane vesicles, such as multivesicular liposomes (MVL), methods for preparing such formulations, and the use of specific formulations for therapeutic treatment of subjects in need thereof.BACKGROUND[0003]The following includes information that may be useful in understanding the present embodiments. It is not an admission that any of the information provided herein is prior art, or relevant, to the presently described or claimed embodiments, or that any publication or document that is specifically or implicitly referenced is prior art.[0004]Large scale metho...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): A61K9/127B01F3/12A61P23/00A61K9/00A61K31/4458F23D11/10B01D15/00
CPCA61K31/4458B01F3/0807B01F3/088B01F5/104B01F7/0075B01J13/125A61K9/127A61K9/1277A61M11/00B01J13/043A61K9/4833A61K31/445A61P23/00A61P23/02B01F23/49B01F23/41B01F25/52B01F27/27B01D1/16B01F23/2132B01F35/92B01F2035/98B01F2101/22A61K9/1271
Inventor SCHUTT, ERNEST GEORGEMCGUIRE, RONALD WARRENWALTERS, PETER ANDREWLOS, KATHLEEN D.A.
Owner PACIRA PHARMA INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products