Supported non-metallocene catalyst, preparation method and application

A non-metallocene, supported technology, applied in the field of non-metallocene catalysts, can solve the problems of complex preparation process, fragility, and low polymerization activity of the catalyst, and achieve the effect of simple preparation method

Active Publication Date: 2015-01-28
CHINA PETROLEUM & CHEM CORP +1
View PDF41 Cites 0 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

These two methods use a magnesium compound support, and the particle morphology of the catalyst is difficult to control, which limits the particle morphology of the polymer obtained from the polymerization.
[0010] Chinese patents CN200910180603.3, CN200910180604.8, CN200910210989.8, CN200910210986.4, CN200910210985.X, CN200910210990.0 disclose the preparation method of supported non-metallocene catalysts similar to the above-mentioned patents. Particle morphology in the presence of catalyst is difficult to control, limiting the polymer particle morphology obtained from this polymerization
[0011] Catalysts supported on anhydrous magnesium chloride show high catalytic activity in olefin polymerization, but such catalysts are very brittle and break easily in the polymerization reactor, resulting in poor polymer morphology
Silica-supported catalysts have good fluidity and can be used in gas-phase fluidized bed polymerization, but silica-supported metallocene and non-metallocene catalysts show low catalytic activity
[0018] Patents CN200910180100.6 and CN200910180607.1 disclose that in the absence of alcohol, the non-metallocene complex is dissolved in the magnesium compound solution, and then the porous carrier is added, dried directly or filtered, washed and dried, and then treated with IVB chemical treatment agents, thereby The preparation method and polymerization application of the supported non-metallocene catalyst are obtained. The non-metallocene complex exists uniformly in the carrier, but in the examples, the activity of catalyzing ethylene polymerization is low, and the similar one is the patent CN200910180601.4 And CN200910180606.7 disclosed supported non-metallocene catalyst preparation method and polymerization application, its main difference is that it is not treated with IVB group chemical treatment agent, thus resulting in lower catalyst polymerization activity
[0019] Patent CN200710162666.7 discloses a supported catalyst, a supported non-metallocene catalyst and its preparation method. In the presence of alcohol, a magnesium compound is dissolved in a tetrahydrofuran solvent, a porous carrier is added, and after direct drying, it is mixed with titanium tetrachloride reaction, and finally load the non-metallocene complex, the catalyst activity is high, and the polymer obtained by this polymerization has a high bulk density, but the preparation process is more complicated, and the reaction between the chemical treatment agent and the carrier will destroy the formed carrier structure. Polymer fines are then produced during the polymerization process
[0020] Nevertheless, the ubiquitous problems of the supported non-metallocene catalysts in the prior art are that the loading process is complicated, and generally requires multi-step treatment of the support before loading the non-metallocene complexes, and the olefin polymerization activity is low and difficult to adjust. , and in order to improve its polymerization activity, a higher amount of co-catalyst must be assisted in the polymerization of olefins

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Supported non-metallocene catalyst, preparation method and application
  • Supported non-metallocene catalyst, preparation method and application
  • Supported non-metallocene catalyst, preparation method and application

Examples

Experimental program
Comparison scheme
Effect test

preparation example Construction

[0095] The present invention relates to a method for preparing a supported non-metallocene catalyst, including the following steps: optionally reacting a magnesium compound with a chemical treatment agent selected from group IVB metal compounds in a solvent in the presence of an alcohol to obtain a first slurry Steps: contacting the non-metallocene complex with the first slurry to obtain a second slurry; and directly drying the second slurry to obtain the supported non-metallocene catalyst.

[0096] The magnesium compound will be specifically described below.

[0097] According to the present invention, the term "magnesium compound" uses a common concept in the art, and refers to an organic or inorganic solid anhydrous magnesium-containing compound conventionally used as a support for a supported olefin polymerization catalyst.

[0098] According to the present invention, as the magnesium compound, for example, magnesium halides, alkoxy magnesium halides, alkoxy magnesium, alkyl magn...

Embodiment 1

[0272] The magnesium compound uses anhydrous magnesium chloride, the solvent uses toluene, the alcohol uses butanol, the IVB group metal compound chemical treatment agent uses titanium tetrachloride, and the non-metallocene complex uses the structure compound of.

[0273] Weigh 5g of anhydrous magnesium chloride, add solvent and alcohol, and dissolve completely at room temperature, then add dropwise chemical treatment agent for 1 hour at a uniform rate, stir and react at 60°C for 4 hours to obtain the first slurry, and then add the non-metallocene complex to the first slurry In a slurry, the reaction is stirred at room temperature for 6 hours to obtain a second slurry, and finally at room temperature under vacuum drying to obtain a supported non-metallocene catalyst.

[0274] The ratio of magnesium compound to solvent is 1mol:210ml; the molar ratio of magnesium compound to alcohol is 1:0.5; the molar ratio of magnesium compound to non-metallocene complex is 1:0.08; the magnesium co...

Embodiment 2

[0277] It is basically the same as embodiment 1, but has the following changes:

[0278] The alcohol is ethanol, the solvent is changed to ethylbenzene, and the chemical treatment agent of the IVB group metal compound is changed to zirconium tetrachloride (ZrCl 4 ), the use of non-metallocene complex

[0279] The ratio of magnesium compound to solvent is 1mol: 150ml; the molar ratio of magnesium compound to alcohol is 1:1.64; the molar ratio of magnesium compound to non-metallocene complex is 1:0.15; the magnesium compound and the IVB group metal element The calculated molar ratio of chemical treatment agent is 1:0.20.

[0280] The supported non-metallocene catalyst is referred to as CAT-2.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

The invention relates to a supported non-metallocene catalyst and a preparation method. The supported non-metallocene catalyst is prepared by the steps of reacting a magnesium compound and an IVB group chemical treating agent under the existence of alcohol, and reacting with a non-metallocene complex, and directly drying finally. The preparation method is simple and feasible, and the load capacity of the non-metallocene ligand is adjustable. The invention also relates to the application of the supported non-metallocene catalyst in olefin homopolymerisation / copolymerization. Compared with the prior art, the supported non-metallocene catalyst has the characteristics of less usage of a cocatalyst for catalyzing polymerization of alkene, high polymerization activity, substantial copolymerization effect, narrow molecular weight distribution, high bulk density of polymer, and high and adjustable viscosity average molecular weight of the prepared ultrahigh molecular weight polyethylene.

Description

[0001] This application is based on the research project of the National Eleventh Five-Year Support Plan. The project has received great attention and strong support from the Ministry of Science and Technology. Its goal is to form a new generation of polyolefin catalyst technology with independent intellectual property rights, and to improve the homogeneity of domestic related products, improve the grade of polyolefin products in my country, and promote its development. Development in the direction of diversification, serialization, specialization and high performance. Technical field [0002] The invention relates to a non-metallocene catalyst. Specifically, the present invention relates to a supported non-metallocene catalyst, its preparation method and its application in olefin homopolymerization / copolymerization. Background technique [0003] Non-metallocene catalysts appeared in the mid-to-late 1990s, also known as post-catalysts. The central atom of the main catalyst include...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Patents(China)
IPC IPC(8): C08F10/00C08F4/658C08F4/645C08F4/02
Inventor 李传峰任鸿平柏基业阚林郭峰左胜武梅利陈韶辉
Owner CHINA PETROLEUM & CHEM CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products