A method for preparing super-hydrophobic composite nano-array interface material
A technology of nano-arrays and interface materials, which is applied in the direction of nano-technology, metal material coating technology, and devices for coating liquid on the surface. The effect of gaining, benefiting industrialized production and method innovation
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Problems solved by technology
Method used
Image
Examples
Embodiment 1
[0025] A method for preparing a super-hydrophobic composite nano-array interface material, comprising the following steps:
[0026] 1) Cut a 4cm×4cm copper sheet as the base material, and polish the copper sheet with 800 mesh, 1500 mesh, and 3000 mesh in turn to make the surface rough. Sonicate in acetone, absolute ethanol, and ultrapure aqueous solution for 5 minutes respectively, take out the nitrogen gas and blow dry, and then place it in a 60°C oven for oxidation for 1 hour to seed the copper-based surface;
[0027] 2) Configure chemical bath solution, select c(Zn 2+ ) : c(OH + ) = molar ratio of 1:8, Zn 2+ is derived from zinc nitrate hexahydrate [Zn(NO 3 ) 2 6H 2 O], OH + The source of NaOH is sodium hydroxide, respectively measure 25mL of the solution in a 40mm×70mL weighing bottle, mix and stir until clear to form a chemical bath solution. Suspend the copper sheet in the chemical bath solution in reverse, and prepare the zinc oxide nanocone film by chemical bath...
Embodiment 2
[0032] A method for preparing a super-hydrophobic composite nano-array interface material, comprising the following steps:
[0033] 1) Cut a 4cm×4cm copper sheet as the base material, polish the copper sheet with 800 mesh, 1500 mesh, and 3000 mesh in turn to make the surface rough, and then ultrasonically in acetone, absolute ethanol, and ultrapure aqueous solution for 5 minutes to remove nitrogen After drying, place it in an oven at 60°C for 2 hours to oxidize to seed the copper-based surface;
[0034] 2) Configure chemical bath solution, select c(Zn 2+ ) : c(OH + ) = molar ratio of 1:8, Zn 2+ is derived from zinc nitrate hexahydrate [Zn(NO 3 ) 2 6H 2 O], OH + The source of sodium hydroxide (NaOH), respectively measure 25mL solution in a 40mm × 70mL weighing bottle, mix and stir until clear to form a chemical bath solution, hang the copper piece in the chemical bath solution in reverse, heat at 60 ° C Zinc oxide nanocone film was prepared by chemical bath deposition at c...
Embodiment 3
[0039] A method for preparing a super-hydrophobic composite nano-array interface material, comprising the following steps:
[0040] 1) Cut a 4cm×4cm copper sheet as the base material, polish the copper sheet with 800 mesh, 1500 mesh, and 3000 mesh in turn to make the surface rough, and ultrasonically in acetone, absolute ethanol, and ultrapure aqueous solution for 5 minutes respectively, and take out nitrogen After drying, place it in an oven at 60°C for 2 hours to oxidize to seed the copper-based surface;
[0041] 2) Configure chemical bath solution, select c(Zn 2+ ) : c(OH + ) = molar ratio of 1:8, Zn 2+ is derived from zinc nitrate hexahydrate [Zn(NO 3 ) 2 6H 2 O], OH + The source of sodium hydroxide (NaOH), respectively measure 25mL solution in a 40mm × 70mL weighing bottle, mix and stir until clear to form a chemical bath solution, hang the copper piece in the chemical bath solution in reverse, heat at 60 ° C Zinc oxide nanocone film was prepared by chemical bath d...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com