Spectral catalysts
a spectral catalyst and catalyst technology, applied in the field of spectral catalysts, can solve the problems of unfavorable reaction rate, and insufficient quantity of preferred products, and none of the methods are energy efficient,
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Image
Examples
example 2
H.sub.2O.sub.2>>>>>>platinum catalyst>>>>H.s-ub.2O+O.sub.2
[0092] The decomposition of hydrogen peroxide is an extremely slow reaction in the absence of catalysts. Accordingly, an experiment was performed to show that the physical catalyst, finely divided platinum, could be replaced with the spectral catalyst having the spectral pattern of platinum. Hydrogen peroxide was placed in 2 nippled quartz tubes. Both quartz tubes were inverted in beaker reservoirs filled with hydrogen peroxide and were shielded with card board wrapped in aluminum foil to block incident light. One of the wrapped tubes was used as a control. The other quartz tube set-up was exposed to a Fisher Scientific Hollow Cathode Lamp for platinum (Pt) using a Cathodeon Hollow Cathode Lamp Supply C610, at 80% maximum current (12 mAmps) for 24-96 hours. This tube set-up was monitored for increases in temperature to assure that any reaction was not due to thermal effects. A large bubble of O.sub.2 formed in the nipple of t...
example 3
[0094] It is well known that certain susceptible organisms have a toxic reaction to silver (such as E.coli, Strep pneumoniae, or Staph. aureus). In this regard, an experiment was conducted to show that the spectral catalyst emitting the spectrum of silver demonstrated a similar effect on these organisms. Wild E.coli, wild Strep pneumoniae, wild Staph. aureus and wild Salmonella typhi bacteria were plated onto standard growth medium in separate petri dishes. Each dish was placed at the bottom of an exposure chamber. A foil covered cardboard sheet with a patterned slit was placed over each culture plate. A Fisher Scientific Hollow Cathode Lamp for Silver (Ag) was inserted through the lid of the exposure chamber so that the spectral emission pattern of silver was irradiating the bacteria on the culture plate. A Cathodeon Hollow Cathode Lamp Supply C610 was used to power the Ag lamp at 80% maximum current (3.6 mAmps.) The culture plate was exposed to the Ag emission for 12-24 hours, and...
example 4
[0095] To further demonstrate that certain susceptible organisms which have a toxic reaction to silver would have a similar reaction to the spectral catalyst emitting the spectrum of silver. Cultures were obtained from the American Type Culture Collection (ATCC) which included Escherichia coli #25922, Klebsiella pneumonia, subsp Pneumoniae, #13883. The organisms were plated onto a standard growth medium in a petri dish. The dish was placed in the bottom of an exposure chamber such as the bottom of a coffee can. A Fisher Scientific Hollow Cathode Lamp for Silver (Ag) was inserted through the lid (aluminum foil covered coffee lid) of the exposure chamber so that the spectral emission pattern of silver was shining on the culture plate. A Cathodeon Hollow Cathode Lamp Supply C610 was used to power the Ag lamp at 80% maximum current (3.6 mAmps.) The culture plate was exposed to the Ag emission for 12-24 hours, and then incubated using standard techniques. Plates were examined using binoc...
PUM
Property | Measurement | Unit |
---|---|---|
pressure | aaaaa | aaaaa |
electromagnetic spectral pattern | aaaaa | aaaaa |
frequency | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com