Non-steroidal antiinflammatory drug formulations for topical application to the skin

a non-steroidal anti-inflammatory and skin technology, applied in the direction of drug compositions, aerosol delivery, bandages, etc., can solve the problems of loss of activities, undesirable effects, and often failing to meet the stated objectives of conventional administration routes, so as to improve performance, improve performance, and improve performan

Inactive Publication Date: 2003-05-01
SAMOUR CARLOS M +2
View PDF0 Cites 46 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

0118] From the above results reported in Table 12 the following observations and conclusions may be drawn. The first set of experiments, Run Nos. 10A-10C, show that PG exerts a positive effect as a co-enhancer for diclofenac. In a second set of experiments Run Nos. 10D-10F, it is seen that the combination of PG with the dioxolane enhancer provides better performance than might be expected from the results with dioxolane enhancer alone and with PG alone. From the third set of experiments, Run Nos. 10-G and 10-H, it is observed that DEA as the counterion (base) provides better performance than sodium (Na). Finally, from the fourth set of experiments, Run Nos. 10-I and 10-J it is seen that the formulation according to the present invention provides significantly improved performance in comparison to a commercial diclofenac topical formulation.

Problems solved by technology

These conventional routes of administration often fail to meet the stated objectives, however.
For example, when drugs are absorbed into the blood stream by whatever route, peaks and valleys in the blood concentration of the drug occur and may cause undesirable effects (e.g., peak levels), or loss of activities (e.g., valleys).
Although these formulations attempt to control the release of drugs from their carriers, the desired effects are often not reproducible, may be subject to patient-to-patient variations, and may not be suitable for prolonged periods of delivery, such as days or even months.
However, present transdermal delivery systems have major drawbacks.
High molecular weight drugs or drugs with too high or low hydrophilic balance often cannot be incorporated into current transdermal systems in concentrations high enough to overcome their impermeability through the stratum corneum.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Non-steroidal antiinflammatory drug formulations for topical application to the skin
  • Non-steroidal antiinflammatory drug formulations for topical application to the skin
  • Non-steroidal antiinflammatory drug formulations for topical application to the skin

Examples

Experimental program
Comparison scheme
Effect test

third embodiment

[0085] The vehicle for any of the forms of the compositions of the invention will include glycol, e.g., propylene glycol, butylene glycol, hexylene glycol, etc. (except in the case of the third embodiment described above), lower alcohol, e.g., ethanol, isopropanol, and, usually, water. A thickening or gelling agent is also usually and preferably included to facilitate application of the formulation to the skin. In addition, of course, the skin penetration enhancing dioxolane, dioxane or acetal is included in the formulations in an amount effective to enhance the penetration of the active NSAID ingredient through the skin, including the stratum corneum.

[0086] Accordingly, the vehicle or carrier system for the NSAID and enhancer components is preferably an aqueous or non-aqueous alcoholic carrier containing sufficient alcohol, especially ethanol and / or isopropanol and, often, glycol, e.g., propylene glycol, to solubilize the NSAID and be miscible with the enhancer. Generally, however,...

example 1

[0091] This example compares the percutaneous absorption through porcine skin, of ibuprofen from aqueous alcoholic gels containing 5 wt. % ibuprofen and either 5%, 10% or 15% of 2-n-nonyl-1,3-dioxolane, using an ethanol / water carrier at a 70:30 mixing ratio. The formulations include NaOH to adjust the pH to 7.4, but do not include a glycol. Hydroxypropyl cellulose (2 wt. %) is used as the gelling agent. The test compositions are applied to provide about 30 milligrams (mg) of the composition per square centimeter (cm.sup.2) of porcine skin.

[0092] The tests are run in standard static cells with phosphate buffered saline (PBS) as the receptor fluid (surface area 0.635 cm.sup.2, temperature 32.degree. C.). The following Table 1 shows the total amount of ibuprofen applied to the skin for each formulation. The differences result from the slightly different thicknesses at which the test formulations are applied. Each test was run for 24 hours under non-occluded conditions with the finite d...

example 2

[0095] This example shows the effect of incorporating propylene glycol in the aqueous alcoholic gel formulation containing 5% ibuprofen and 10% 2-n-nonyl-1,3-dioxolane using an ethanol:water vehicle at a 70:30 weight mixing ratio. The compositions used in these tests are shown in Table 3 (NaOH is added to adjust the pH to 7.4):

3 TABLE 3 propylene ibuprofen enhancer glycol Ethanol Water Total (%) (%) (%) (%) (%) (%) A 5 10 0 59.5 25.5 100 B 5 10 5 56 24 100 C 5 10 10 52.5 22.5 100 D 5 10 15 49 21 100 E 5 10 20 45.5 19.5 100

[0096] The test was run using the same conditions as described in Example 1. The flux was measured at 2, 4 and 6 hours. The results are shown graphically in FIG. 3. From this figure it is seen that the flux at 2 hours decreases nearly linearly as the propylene glycol (PG) content increases from 0% to 5% to 10% to 15% to 20%. At four hours after the composition is applied to the test skin sample the fluxes for each concentration of PG has increased but more so for t...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
surface areaaaaaaaaaaa
wt. %aaaaaaaaaa
temperatureaaaaaaaaaa
Login to view more

Abstract

Topical alcoholic or aqueous alcoholic gels containing ibuprofen or other NSAIDs, such as, naproxen, in substantially neutral salt form, have enhanced penetration through skin and may provide rapid pain/inflammation relief by including in the formulation 2-n-nonyl-1,3-dioxolane or other hydrocarbyl derivative of 1,3-dioxolane-or 1,3-dioxane or acetal, as skin penetration enhancing compound. The amount of propylene glycol may be varied to adjust the initial flux of the NSAID through the skin, especially for ibuprofen, naproxen, and ketorolac.

Description

[0001] This invention relates to topical compositions for transdermal administration of a non-steroidal antiinflammatory drug (NSAID) through the skin of a patient and to the method for transdermally administering the non-steroidal antiinflammatory drug using the topical composition.DISCUSSION OF THE PRIOR ART[0002] All drugs must be administered in such a manner that they reach the intended site in the body in an optimal concentration (amount of drug per unit volume of blood) to achieve the desired effect at the proper time, and for an appropriate length of time. Customarily, drugs are taken orally, injected, inhaled, or applied topically. These conventional routes of administration often fail to meet the stated objectives, however. For example, when drugs are absorbed into the blood stream by whatever route, peaks and valleys in the blood concentration of the drug occur and may cause undesirable effects (e.g., peak levels), or loss of activities (e.g., valleys). To meet these prob...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): A61K9/08A61K9/06A61K31/192A61K45/08A61K47/08A61K47/10A61K47/22A61K47/38A61P29/00
CPCA61K9/0014A61K9/06A61K31/192Y10S514/946A61K47/10A61K47/22Y10S514/944A61K47/08A61P29/00
Inventor SAMOUR, CARLOS M.KRAUSER, SCOTT F.GYURIK, ROBERT J.
Owner SAMOUR CARLOS M
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products