Reactive oil/copper preservative systems for wood products

a preservative system and reactive oil technology, applied in the field of reactive oil/copper preservative systems for wood products, can solve the problems of reducingaffecting the expansion of wood fiber, particle and flake based composites into certain construction applications, and limiting the physical and mechanical properties of the manufactured panels, etc., to achieve the effect of enhancing the dimensional stability or water repellency of the wood composite, reducing the likelihood of leaching

Inactive Publication Date: 2005-01-06
ARCHER DANIELS MIDLAND CO +1
View PDF10 Cites 5 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

The drying oil is present in the wood in an effective amount to accomplish at least one useful end. One useful end is to reduce the water absorption of the treated wood. An alternative useful end is to reduce the thickness swell of the treated wood.
The wood preservative again is present in the wood composite in an amount effective to improve the resistance of the treated wood composite to at least one type of decomposition.
The presence of a copper based wood preservative with a reactive agricultural oil or fish oil has the potential to provide biological efficacy against wood biodeteriogens. (A biodeteriogen is an organism that is capable of causing biodeterioration—an undesirable change in the properties of a material caused by the vital activities of living organisms.) Biodeteriogens for wood include decay fungi, termites and other insects. Complexation of the preservative with the reactive oil reduces the likelihood of leaching / depletion of the preservative in service.
The drying oil again is present in the wood in an effective amount to accomplish at least one useful end. For example, the drying oil may interact to enhance the dimensional stability or water repellency of the wood composite, and may function to reduce or eliminate the need for a separate binder resin.
Yet another aspect of the invention is a method of making treated wood composites. One step of the method is providing green wood in flaked form. Another step of the method is adding to the green wood a copper based wood preservative. The wood preservative again is added to the wood composite in an amount effective to improve the resistance of the treated wood composite to at least one type of decomposition. Another step of the method, alternatively carried out simultaneously with, before, or after the wood preservative treatment, is adding to the green wood a drying oil. The drying oil again is present in the wood composite in an effective amount to accomplish at least one useful end.
One advantage of the present method is that it allows the wood to be treated with the preservative while green, then dried once, instead of drying the wood, treating it with a water dispersion of the treating agent (thus rewetting the wood), then drying the wood a second time.

Problems solved by technology

However, these products are typically used in interior applications where attack from insects or decay fungi is limited and dimensional stability is not of great concern.
The expansion of wood fiber, particle and flake based composites into certain construction applications is hindered by limitations in the physical and mechanical properties of the manufactured panels, in particular excessive water absorption and propensity to swell, but also by their susceptibility to attack by biological agents such as decay fungi and termites.
Historically, attempts to incorporate chemical treatments into wood based composites using similar technology have failed for economic reasons or more commonly because of technical problems associated with irreversible and excessive swelling of the treated panels and severe loss of structural integrity.
Therefore, more solid wood and wood fiber can be channeled to new construction and not the replacement market.
This will limit the stress on the forest resources of North America, which have been shrinking over the last two decades due to land being tied up in “natural” status, which cannot be harvested.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

example 1

Five sets of three wood composite panels measuring 21 inches ×21inches ×½ inch ( 53 cm ×53 cm ×1.2 cm) were manufactured on a laboratory press. One set of panels contained no oil or preservative and served as reference control panels. Another set of panels used copper ammonium acetate (copper ammonium acetate complex wood preservative) treated flakes without linseed oil and was designed to serve as a reference control. The remaining panels used copper ammonium acetate treated flakes with varying loadings of linseed oil, Archer Daniels Midland's GP-1125. These levels were 1.25%, 2.5%, and 5.0% m / m based on oven dry wood weight.

Green flakes (50% mc—“moisture content”) were treated with copper ammonium acetate alone or in combination with the various levels of oil in a rotary batch type blender equipped with a Coil Spinning disc atomizer. The flakes were treated with concentrated copper ammonium acetate solution (31.32% nominal active ingredient level) such that the final chemical l...

example 2

The objective of this study was to determine if the synergistic effects observed with OSB would carry over into other composite applications.

Several sets of medium density fiberboard (MDF) panels were manufactured using a lab press and a mixture of northern hardwood fiber. These panels measured 21 inches by 21 inches by ⅜ inch thick (53 cm×53 cm×1 cm).

Fiber as received was rehydrated to approximately 50% MC (moisture content) oven-dry basis to simulate the raw material supply used in conventional MDF manufacturing operations. Then the fiber was treated with 3.1% m / m of an active copper ammonium acetate complex wood preservative and 5% m / m of Archer Daniels Midland GP-1125 linseed oil. The treated fiber was dried to between 1-2% MC, oven-dry basis. The resulting dried treated fiber was blended with various levels of liquid phenolic resin and 0.5% solids of a wax emulsion. Phenolic resin was applied to the treated fiber at 2, 4, 6 and 8% solids levels.

A control group of untreat...

example 3

OSB-Oil Addition in the Blender

While excellent results were observed adding linseed oil and copper ammonium acetate complex wood treatment to the green furnish prior to drying, it was hypothesized that similar results could occur if the oil was added to the blender at the same time as the resin and wax. The copper ammonium acetate complex wood treatment is desirably added to the green strands prior to drying since the increase in moisture content associated with the water borne preservative might not be conducive to a blender application.

In the manufacture of OSB, wax emulsions are typically incorporated into the furnish at an addition rate of 1.0% solids. With such a low rate of addition, optimizing coverage and distribution on the entire volume of furnish can be a challenge. One of the potential benefits of adding the linseed oil at the same time as either the wax or liquid resin is that the combined volumes of these components would be increased. This would result in better ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
resistanceaaaaaaaaaa
water absorptionaaaaaaaaaa
bond strengthaaaaaaaaaa
Login to view more

Abstract

The specification describes preserved solid wood or wood composites including a copper ammonium acetate complex wood preservative and a drying oil. The wood preservative is present in the wood in an amount effective to improve the resistance of the treated wood to at least one type of decomposition, such as decay or insect attack. The drying oil is present in the wood in an effective amount to accomplish at least one useful end, such as reducing the water absorption or thickness swell of the treated wood or increasing its mechanical strength, even in a wood composite made using less binding resin than usual. Yet another aspect of the invention is a method of making the treated wood from green wood in solid or flaked form. A copper ammonium acetate complex wood preservative and optionally a drying oil are added to the green wood.

Description

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT Not applicable. BACKGROUND This invention relates to the incorporation of a drying oil and a copper containing preservative system into wood products, which may include lumber and plywood, and into wood and agricultural based composite products. Wood based composite products can include products such as oriented strandboard, medium density fiberboard, fiberboard, hardboard, and particle board. The invention also relates to the method of manufacturing wood based composite products whereby a drying oil and a wood preservative composition are added to the wood furnish (defined as wood strands, chips, particles, flakes and fiber), plywood (whether in the form of separate plies or a bound sheet), or solid wood prior to or after drying. Where a wood furnish or separate wood plies are treated, the wood is then formed and pressed into a finished board or panel product. The production of wood based composite panel products ha...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): B27K3/22B27K3/50B27K3/52B32B21/14
CPCB27K3/22B27K3/36B27K3/52Y10T428/2991B27K2240/70B32B21/14B27K5/04Y10T428/31971Y10T428/31982Y10T428/31986Y10T428/31989
Inventor ROOS, KENNETH D.ARCHER, KEVIN J.
Owner ARCHER DANIELS MIDLAND CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products