Reactive oil/copper preservative systems for wood products
a preservative system and reactive oil technology, applied in the field of reactive oil/copper preservative systems for wood products, can solve the problems of reducingaffecting the expansion of wood fiber, particle and flake based composites into certain construction applications, and limiting the physical and mechanical properties of the manufactured panels, etc., to achieve the effect of enhancing the dimensional stability or water repellency of the wood composite, reducing the likelihood of leaching
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Examples
example 1
Five sets of three wood composite panels measuring 21 inches ×21inches ×½ inch ( 53 cm ×53 cm ×1.2 cm) were manufactured on a laboratory press. One set of panels contained no oil or preservative and served as reference control panels. Another set of panels used copper ammonium acetate (copper ammonium acetate complex wood preservative) treated flakes without linseed oil and was designed to serve as a reference control. The remaining panels used copper ammonium acetate treated flakes with varying loadings of linseed oil, Archer Daniels Midland's GP-1125. These levels were 1.25%, 2.5%, and 5.0% m / m based on oven dry wood weight.
Green flakes (50% mc—“moisture content”) were treated with copper ammonium acetate alone or in combination with the various levels of oil in a rotary batch type blender equipped with a Coil Spinning disc atomizer. The flakes were treated with concentrated copper ammonium acetate solution (31.32% nominal active ingredient level) such that the final chemical l...
example 2
The objective of this study was to determine if the synergistic effects observed with OSB would carry over into other composite applications.
Several sets of medium density fiberboard (MDF) panels were manufactured using a lab press and a mixture of northern hardwood fiber. These panels measured 21 inches by 21 inches by ⅜ inch thick (53 cm×53 cm×1 cm).
Fiber as received was rehydrated to approximately 50% MC (moisture content) oven-dry basis to simulate the raw material supply used in conventional MDF manufacturing operations. Then the fiber was treated with 3.1% m / m of an active copper ammonium acetate complex wood preservative and 5% m / m of Archer Daniels Midland GP-1125 linseed oil. The treated fiber was dried to between 1-2% MC, oven-dry basis. The resulting dried treated fiber was blended with various levels of liquid phenolic resin and 0.5% solids of a wax emulsion. Phenolic resin was applied to the treated fiber at 2, 4, 6 and 8% solids levels.
A control group of untreat...
example 3
OSB-Oil Addition in the Blender
While excellent results were observed adding linseed oil and copper ammonium acetate complex wood treatment to the green furnish prior to drying, it was hypothesized that similar results could occur if the oil was added to the blender at the same time as the resin and wax. The copper ammonium acetate complex wood treatment is desirably added to the green strands prior to drying since the increase in moisture content associated with the water borne preservative might not be conducive to a blender application.
In the manufacture of OSB, wax emulsions are typically incorporated into the furnish at an addition rate of 1.0% solids. With such a low rate of addition, optimizing coverage and distribution on the entire volume of furnish can be a challenge. One of the potential benefits of adding the linseed oil at the same time as either the wax or liquid resin is that the combined volumes of these components would be increased. This would result in better ...
PUM
Property | Measurement | Unit |
---|---|---|
resistance | aaaaa | aaaaa |
water absorption | aaaaa | aaaaa |
bond strength | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com