Systems and methods for forming metal oxides using alcohols

Inactive Publication Date: 2005-06-23
MICRON TECH INC
View PDF30 Cites 90 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0008] This invention provides methods of vapor depositing a metal oxide layer on a substrate. These vapor deposition methods involve forming the layer by combining one or more alcohols with one or more metal organo-amine precursor compounds (e.g., alkylamines or alkylimines-alkylamines) and/or metal alkyl precursor compounds. Significantly, the meth

Problems solved by technology

The continuous shrinkage of microelectronic devices such as capacitors and gates over the years has led to a situation where the materials traditionally used in integrated circuit technology are approaching their performance limits.
However, when the SiO2 layer is thinned to 1 nm (i.e., a thickness of only 4 or 5 molecules), as is desired in the newest micro devices, the layer no longer effectively performs as an insulator due to the tunneling current ru

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Systems and methods for forming metal oxides using alcohols
  • Systems and methods for forming metal oxides using alcohols
  • Systems and methods for forming metal oxides using alcohols

Examples

Experimental program
Comparison scheme
Effect test

example 1

Pulsed Chemical Vapor Deposition of TiO2

[0071] A chamber of configuration shown in FIG. 4 was set up with pneumatic valves under computer control to pulse the valves open in sequential manner. Two reservoirs connected to the chamber contained Ti(NMe2)4 (Strem Chemical, Newburyport, Mass.) and isopropyl alcohol (General Chemical, Parsippany, N.J.). The substrate was a silicon wafer having doped poly-silicon as a top layer and was maintained at 220° C. for the deposition.

[0072] Each cycle involved a 5-second pulse of Ti(NMe2)4 and a 5-second pulse of isopropyl alcohol, each separated by a 5-second purge with argon and a 5-second pump down under dynamic vacuum. The precursors were introduced without helium carrier gas, using only a mass flow controller downstream of the isopropyl alcohol reservoir set at 50 sccm. After 400 cycles a TiO2 film 1750 Å thick was obtained. The film contained only titanium and oxygen based on x-ray photoelectron spectroscopy (XPS) analysis, and had no dete...

example 2

Atomic Layer Deposition of HfO2

[0073] A chamber of configuration shown in FIG. 4 was set up with pneumatic valves under computer control to pulse the valves open in sequential manner. Two reservoirs connected to the chamber contained Hf(NMe2)4 (Strem Chemical, Newburyport, Mass.) and isopropyl alcohol (General Chemical, Parsippany, N.J.). The Hf(NMe2)4 precursor was heated to 40° C. while the isopropyl alcohol remained at ambient. The substrate was a silicon wafer having doped poly-silicon as a top layer and was maintained at 215° C. for the deposition.

[0074] Each cycle involved a 2-second pulse of Hf(NMe2)4 and a 1-second pulse of isopropyl alcohol, each separated by a 5-second purge with argon and a 5-second pump down under dynamic vacuum. The precursors were introduced without helium carrier gas, using only a mass flow controller downstream of the isopropyl alcohol reservoir set at 25 sccm. After 400 cycles a HfO2 film 250 Å thick was obtained. The film contained only hafnium a...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
Temperatureaaaaaaaaaa
Temperatureaaaaaaaaaa
Temperatureaaaaaaaaaa
Login to view more

Abstract

A method of forming (and an apparatus for forming) a metal oxide layer on a substrate, particularly a semiconductor substrate or substrate assembly, using a vapor deposition process, one or more alcohols, and one or more metal-containing precursor compounds.

Description

FIELD OF THE INVENTION [0001] This invention relates to methods of forming a metal oxide layer on a substrate using one or more alcohols and one or more metal-containing precursor compounds during a vapor deposition process. The precursor compounds and methods are particularly suitable for the formation of a metal oxide layers on semiconductor substrates or substrate assemblies. BACKGROUND OF THE INVENTION [0002] The continuous shrinkage of microelectronic devices such as capacitors and gates over the years has led to a situation where the materials traditionally used in integrated circuit technology are approaching their performance limits. Silicon (i.e., doped polysilicon) has generally been the substrate of choice, and silicon dioxide (SiO2) has frequently been used as the dielectric material with silicon to construct microelectronic devices. However, when the SiO2 layer is thinned to 1 nm (i.e., a thickness of only 4 or 5 molecules), as is desired in the newest micro devices, th...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): C23C16/40C23C16/44C23C16/455F17C11/00H01L21/316H01L21/822H01L21/8242H01L21/8244H01L21/8246H01L27/04H01L27/105H01L27/108H01L27/11H01L29/78
CPCC23C16/40C23C16/405H01L21/31683F17C11/00H01L21/31604C23C16/45553H01L21/02194H01L21/02205H01L21/02175H01L21/02186H01L21/02271H01L21/0228H01L21/31C23C16/403
Inventor VAARTSTRA, BRIAN A.
Owner MICRON TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products