Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Semiconductor device and method for manufacturing same

a semiconductor and device technology, applied in the field of semiconductor devices, can solve the problems of difficult to form a device of a high withstand voltage system, the board area cannot be small, and the whole semiconductor device cannot be made small, and achieve the effect of excellent low power consumption and high speed

Inactive Publication Date: 2010-04-08
RENESAS ELECTRONICS CORP
View PDF4 Cites 33 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0020]According to the invention according to the above-described means, since the device of a high withstand voltage system and the ESD protection device for preventing ESD breakdown (electrostatic breakdown) are formed as a bulk-MISFET on the same substrate, the board area can be made smaller as compared to a case where an SOI-type MISFET which is excellent in low power consumption and high speed and a bulk-type MISFET are formed on different substrates and are connected with each other. Moreover, steps for manufacturing the SOI-type MISFET and the bulk-type MISFET are made common, so that manufacture of both the devices can be realized without complicating the process.

Problems solved by technology

It is difficult to form a device of a high withstand voltage system, an ESD protection device for preventing ESD breakdown (electrostatic breakdown), and the like on the SOI substrate.
In this manner, when a bulk silicon substrate and an SOI substrate are used, two substrates are required, so that a board area cannot be made small, and therefore the whole semiconductor device cannot be made small.
Moreover, when an SOI-type MISFET and a bulk-type MISFET are tried to be manufactured on the same substrate, selective epitaxial growth technique is required, and it is required to manufacture an SOI-type MISFET and a bulk-type MISFET in different steps, for example as shown in Non-Patent Document 2, which results in such a problem that the process becomes complex.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Semiconductor device and method for manufacturing same
  • Semiconductor device and method for manufacturing same
  • Semiconductor device and method for manufacturing same

Examples

Experimental program
Comparison scheme
Effect test

first embodiment

[0057]FIG. 1 is a sectional view showing a completed MISFET according to a first embodiment of the present invention. Manufacturing steps thereof will be described with reference to FIG. 2 and subsequent figures. For convenience of description, description will be made with conductive types of a semiconductor substrate and a semiconductor film being fixed, but the combination of conductive types may be arbitrary, so the conductive type is not limited to the ones described in the present embodiment. A first semiconductor substrate is made by a semiconductor substrate 1 made of single crystal Si having a plane orientation of (100), P conductive type, a resistivity of 10 ohm·cm and a diameter of 20 cm, a main surface thereof has been subjected to mirror polishing, and a thermal oxide film 4 made of silicon having a thickness of 10 nm is formed thereon. Hydrogen ion implantation is performed to the first semiconductor substrate based on a well-known method of manufacturing an ultra-thin...

second embodiment

[0075]Next, a semiconductor device according to a second embodiment of the present invention will be described. In the present embodiment, though the semiconductor device is manufactured according to the first embodiment, it has a different layout the second embodiment and has been invented to be capable of forming a bulk-type MISFET more stably. In the present embodiment, the layout at the step of removing the resist mask is different only in the region 200 in FIG. 4 in which the bulk-type MISFET is formed. In the first embodiment, the silicon oxide film 36, the single crystal Si layer 3 and the thin buried insulating film 4 are removed except for the region 200 in which the bulk-type MISFET is formed to expose the supporting substrate surface. On the other hand, in the second embodiment, as shown in the plan view of FIG. 26, a dummy pattern 60 is provided around the region 200 in which the bulk-type MISFET is formed, and the silicon oxide film 36, the single crystal Si layer 3 and...

third embodiment

[0078]FIG. 27 is a sectional view of a semiconductor device showing a third embodiment according to the present invention. In the present embodiment, though the semiconductor device is manufactured basically in a similar manner as the abovedescribed embodiments, in the third embodiment, prior to formations of the ultra-shallow N-conductive type high-concentration source diffusion layer 8 and the ultra-shallow N-conductive type high-concentration drain diffusion layer 9, and the ultra-shallow P-conductive type high-concentration source diffusion layer 10 and the ultra-shallow P-conductive type high-concentration drain diffusion layer 11, formation of an offset spacer 17 are performed on sidewalls of the gate electrode. The offset spacer 17 is formed on the sidewalls of the gate electrode by depositing, for example, a silicon oxide film, a silicon nitride, a titanium oxide film, or the like by about 10 nm by CVD method and etching back the insulating film. The ultra-shallow high-conce...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

When a bulk silicon substrate and an SOI substrate are used separately, a board area is increased and so it is impossible to reduce the size of a semiconductor device as a whole. On the other hand, when an SOI-type MISFET and a bulk-type MISFET are formed on a same substrate, the SOI-type MISFET and the bulk-type MISFET should be formed in separate steps respectively, and thus the process gets complicated. A single crystal semiconductor substrate and an SOI substrate separated from the single crystal semiconductor substrate by a thin buried insulating film and having a thin single crystal semiconductor thin film (SOI layer) are used, and well diffusion layer regions, drain regions, gate insulating films and gate electrodes of the SOI-type MISFET and the bulk-type MISFET are formed in same steps. Since the bulk-type MISFET and the SOI-type MISFET can be formed on the same substrate, the board area can be reduced. A simple process can be realized by making manufacturing steps of the SOI-type MISFET and the bulk-type MISFET common.

Description

TECHNICAL FIELD[0001]The present invention relates to an MISFET having a stacked structure of semiconductor / insulating film / metal, and more specifically it relates to a semiconductor device in which an MISFET is formed on a substrate having an SOI (Silicon on Insulator) structure and a method for manufacturing the same.BACKGROUND ART[0002]Recently, as high integration and high performance of LSIs have progressed, miniaturization of MISFET (Metal / Insulator / Semiconductor Field Effect Transistor) is advanced and its gate length is scaled, so that a problem of the short-channel effect which lowers a threshold voltage Vth has become significant. The short-channel effect is caused by the fact that a spread of a depletion layer in source and drain portions of the MISFET influences a channel portion according to miniaturization of the channel length. Increasing impurity concentration in the channel portion to suppress the spread of the depletion layer in the source and drain portions is one...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): H01L29/786H01L21/336H01L21/86
CPCH01L21/823878H01L21/84H01L27/12H01L27/1207H01L27/0922
Inventor TSUCHIYA, RYUTAKIMURA, SHINICHIRO
Owner RENESAS ELECTRONICS CORP
Features
  • Generate Ideas
  • Intellectual Property
  • Life Sciences
  • Materials
  • Tech Scout
Why Patsnap Eureka
  • Unparalleled Data Quality
  • Higher Quality Content
  • 60% Fewer Hallucinations
Social media
Patsnap Eureka Blog
Learn More