Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Production of lithium compounds directly from lithium containing brines

Inactive Publication Date: 2006-06-01
BORYTA DANIEL ALFRED +2
View PDF12 Cites 46 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0039] The present invention provides an integral and novel process which reduces the number of major processing steps for producing chemical (technical) grade and low sodium lithium carbonate and lithium chloride directly from natural lithium containing brines concentrated to about 6.0 wt % Li without the lithium hydroxide monohydrate single and double recrystallization steps present in the processes of the prior art.
[0054] The present invention also provides an apparatus for continuously purifying lithium carbonate having a dissolver which is a baffled reactor to dissolve lithium carbonate that includes a mixer / disperser, a carbon dioxide gas dispersion tube, a wash water filtrate / mother liquor filtrate recycle line, a cooler, a stilling well to separate gas and undissolved lithium carbonate solids from the resultant lithium bicarbonate solution, and a continuous chemical grade lithium carbonate crystal feeder; an inline filter to remove insoluble impurities from the lithium bicarbonate solution coming from the stilling well; a heat exchanger to recover heat from the hot mother liquor that is recycled to the dissolver; a heated gas sealed crystallizer with mixer to decompose the lithium bicarbonate solution to form low sodium lithium carbonate crystals, carbon dioxide gas, and mother liquor; a slurry valve to remove the low sodium lithium carbonate crystals and mother liquor from the gas sealed crystallizer; a gas line to continuously return the carbon dioxide produced in the crystallizer to the dissolver; a separator such as a continuous belt filter to separate the low sodium lithium carbonate from the mother liquor and a wash water section to wash the lithium carbonate crystals; a pump and line to return the mother liquor and wash filtrate to the dissolver; a mother liquor bleed to control the sodium level and to maintain a constant liquid volume; and a carbon dioxide source. Preferably, the apparatus has a reactor using absorption columns, such as a sieve tray or a Scheibel column, to facilitate absorption of carbon dioxide in the aqueous slurries.

Problems solved by technology

A substantial portion of presently available lithium is recovered from brines, which also contain high levels of sodium, making the production of low sodium lithium salts difficult and expensive.
At the present time, there does not exist a viable low cost integral processes for producing low sodium lithium carbonate and chemical and high purity grades of lithium chloride directly from natural brines containing lithium.
Except for the methods described in DE 19,541,558, U.S. Pat. No. 4,243,392 and U.S. Pat. No. 5,219,550, the methods of the prior art are not practiced today because they are either technically or economically not viable.
However, the sodium, calcium, and sulfate levels in the resultant brine are too high to be an acceptable brine source of lithium chloride for producing a technical grade lithium metal, primarily because the two major remaining impurities, sodium and magnesium, have to be further reduced to acceptable levels to produce chemical grade lithium chloride crystal.
Lithium chloride high in magnesium can also adversely affect the operation of the lithium electrolysis cell when producing the lithium metal.
This makes the metal more difficult and more dangerous to handle.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Production of lithium compounds directly from lithium containing brines
  • Production of lithium compounds directly from lithium containing brines
  • Production of lithium compounds directly from lithium containing brines

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0149] Preparing Low Sodium Lithium Carbonate

[0150] To a concentrated brine containing 6.19% Li, 1.51% Mg, 0.179% Na, 0.026% K, 0.056% Ca, 0.002% SO4, 0.0003% B, and 36% Cl, recycled mother liquor containing 0.14% Li, 8.26% Na, 0.18% SO4, 12.37% Cl, and 0.58% CO3 was added at a temperature of 70° C. Enough mother liquor was added to form a solution containing 1% Li. This also precipitated most of the magnesium as magnesium carbonate and basic magnesium carbonate. The solution was filtered to remove the precipitated magnesium. The magnesium remaining in solution was removed by adding a limed soda ash reagent which also reduced calcium as an insoluble calcium carbonate solid. The resultant purified brine was filtered and contained 1% Li, 0.0002% Mg, 0.0024% Ca, 6.9% Na, 15.5% Cl. A soda ash solution was prepared using lithium carbonate wash water filtrate and added to the purified brine. The lithium carbonate crystals were filtered and subsequently washed with hot de-ionized or disti...

example 2

[0155] Preparing. Ultra High Purity Lithium Carbonate

[0156] Ultra high purity lithium carbonate was prepared as described above in the same equipment to which was added an ion exchanger between the filter and the heat exchanger. The ion exchange column contains Rohm and Haas, Amberlite IRC-718. The purity of this product is listed in Table 6.

TABLE 6ULTRA HIGH PURITY LITHIUMCARBONATE (EXAMPLE 2)Wt %Li2CO3>99.995MgNaKCaSO4BClSiZnCrCuFeNiP

example 3

[0157] Preparing Low Sodium Lithium Chloride

[0158] Hydrochloric acid (35% conc.) containing less than 0.00015% sodium was reacted with lithium carbonate prepared in Example 1. The resulting solution was evaporated to crystallize lithium chloride. The lithium chloride was filtered from the evaporated solution and dried.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Temperatureaaaaaaaaaa
Temperatureaaaaaaaaaa
Temperatureaaaaaaaaaa
Login to View More

Abstract

Methods and apparatus for the production of low sodium lithium carbonate and lithium chloride from a brine concentrated to about 6.0 wt % lithium are disclosed. Methods and apparatus for direct recovery of technical grade lithium chloride from the concentrated brine are also disclosed.

Description

[0001] This application is a continuation-in-part of U.S. Ser. No. 09 / 707,427 filed Nov. 7, 2000, which is a divisional application of U.S. Ser. No. 09 / 353,185, now U.S. Pat. No. 6,207,126. [0002] This application claims priority under 35 U.S.C §119(e) from U.S. Provisional Application Nos. 60 / 100,340 filed Sep. 14, 1998 and 60 / 093,024 filed Jul. 16, 1998.BACKGROUND AND SUMMARY OF THE INVENTION [0003] The present invention relates to an integral process that uses a minimum number of process steps for producing chemical and high purity grades of lithium carbonate and lithium chloride directly from the same natural brine source. More generally, the method also relates to a method of producing purified metal carbonate salts that are generally insoluble in water but which have corresponding bicarbonate salts that are more then 75% soluble in water by reaction with carbon dioxide. [0004] It is desirable, from a commercial standpoint, to provide a source of lithium low in sodium content b...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): C01D15/00C01B32/60C01D15/04C01F5/22C01F11/18C01F11/46C22B3/44C22B26/12
CPCC01D15/04C01D15/08C01F5/22C01F11/18C01F11/462C01P2006/80C22B3/44C22B26/12Y02P10/20B01J8/00
Inventor BORYTA, DANIEL ALFREDKULLBERG, TERESITA FRIANEZATHURSTON, ANTHONY MICHAEL
Owner BORYTA DANIEL ALFRED
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products