Member for plasma etching device and method for manufacture thereof
a plasma etching and assembly technology, applied in the direction of molten spray coating, plasma technique, coating, etc., can solve the problems of high production cost, difficult and expensive preparation of large-sized members, and poor plasma production efficiency
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Examples
example 1
[0015]A quartz glass chamber for a dry etching apparatus for a 12-inch Si wafer was prepared. A ridge portion of the chamber was subjected to rounding machining so as to have a size of R 2 mm by blowing crystalline silicon dioxide powder on an inner surface of the thus-prepared quartz glass chamber. Further, by blowing crystalline silicon dioxide powder (grain diameter: 100 to 300 μm) also on an entire inner surface of the chamber, the inner surface was allowed to be an irregular face having a surface roughness Ra of 2.5 μm and a Rmax of 20 μm. On the thus-formed inner surface of the quartz glass chamber, Y2O3 was plasma-sprayed, to thereby form a Y2O3 coating film having a thickness of 40 μm. A surface roughness Ra of the coating film was 0.2 μm and a film thickness variance thereof was 12%.
[0016]Inside the above-described quartz glass chamber, a gas mixture of CF4+O2 was allowed to be in a plasmatic condition and, then, an oxide film of the 12-inch Si wafer was etched. Although th...
example 2
[0017]A quartz glass chamber of 12 inch was prepared by using quartz glass in a same manner as in Example 1. A ridge portion of this chamber was subjected to rounding machining by being heated by an oxyhydrogen flame so as to have a size of R 1 mm. Further, the quartz glass chamber was subjected to an etching treatment by using a chemical solution of hydrofluoric acid and ammonium fluoride, to thereby form an irregular face having an Ra of 1.5 μm and a Rmax of 13 μm on an inner surface thereof. On the thus-formed inner surface of the chamber, YAG was plasma-sprayed, to thereby form a YAG coating film of 50 μm. A surface roughness Ra of the YAG coating film on this occasion was 0.5 μm and a film thickness variance thereof was 8%.
[0018]Inside the above-described quartz glass chamber, a gas mixture of CF4+O2 was allowed to be in a plasmatic condition and, then, an oxide film of the 12-inch wafer was etched. Although this chamber was used for 5 weeks, there was no incidence in which the...
example 3
[0019]An aluminum cover for a dry etching apparatus for a 12-inch Si wafer was prepared. A surface of the aluminum cover was subjected to an alumite treatment. A ridge portion of the aluminum cover was subjected to rounding machining so as to have a size of R 1 mm and, then, an outer surface thereof was plasma-sprayed with Y2O3, to thereby form a Y2O3 coating film of 200 μm. A surface roughness Ra of the Y2O3 coating film on this occasion was 0.1 μm and a film thickness variance thereof was 15%.
[0020]Inside the etching apparatus provided with the aluminum cover, a gas mixture of CF4+O2 was allowed to be in a plasmatic condition and, then, an oxide film of the 12-inch wafer was etched. Although this cover was used for 5 weeks, there was no incidence in which the Y2O3 coating film was etched to expose aluminum and there was no generation of an abnormal particle on a surface of the Si wafer.
PUM
Property | Measurement | Unit |
---|---|---|
thickness | aaaaa | aaaaa |
size | aaaaa | aaaaa |
surface roughness | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com