Treated refractory material and methods of making
a refractory material and treatment technology, applied in the field of slagging gasifiers, can solve problems such as refractory degradation
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Image
Examples
example 1
[0049]A sintered high chromia (90 wt %) brick was infiltrated with chromium (III) nitrate solution multiple times followed by subsequent heat treatments in air at 600° C. for 2 hours to decompose the nitrate salt into chromium oxide. The weight of the protective material constituted approximately 10 percent by weight of the refractory brick after all infiltrations. The infiltrated brick was then annealed in nitrogen at 1600° C. for 20 hours to pre-react the chromium oxide before the slag infiltration. The porosity of the untreated refractory before the slag infiltration was about 18-20 vol. %. After infiltration and heat treatment, the porosity was about 12-14 vol. %.
[0050]A slag infiltration test via isothermal annealing of cups filled with slag was performed on the brick infiltrated with chromium oxide and on an untreated brick. The slag composition contained 59.0% silica, 10.7% aluminum oxide, 8.3% calcium oxide, 21.6% iron oxide and 0.3% potassium oxide. Test parameters were 149...
example 2
[0052]Example 1 was reproduced with the exception of using chromium (III) acetate (Cr3(OH)3(CH3COO)2 as the precursor to the chromium oxide protective material. A slag infiltration test via isothermal annealing of cups filled with slag was performed on the brick infiltrated with chromium oxide and on an untreated brick. Test parameters were 1500° C. for 20 hours at an oxygen partial pressure of 10̂-10 atm provided via a mixture of wet and dry N2 / 3% H2 gas.
[0053]Subsequent analysis of slag penetration by XRF mapping of Si distribution at the brick cross-section revealed that slag penetration in the treated brick is much less than the slag penetration in the untreated brick. FIG. 3A shows an XRF mapping of Si of the slag penetration of the untreated brick and the brick treated with chromium oxide.
example 3
[0054]Example 1 was reproduced with the exception of using aluminum nitrate as the precursor for the aluminum oxide protective material. A slag infiltration test via isothermal annealing of cups filled with slag was performed on the brick infiltrated with aluminum oxide and on an untreated brick. Test parameters were 1500° C. for 20 hours at an oxygen partial pressure of 10̂-10 atm provided via a mixture of wet and dry N2 / 3% H2 gas.
[0055]Subsequent analysis of slag penetration by XRF mapping of Si distribution at the brick cross-section revealed that slag penetration in the treated brick is much less than the slag penetration in the untreated baseline brick. FIG. 3B shows an XRF mapping of Si of the slag penetration of the untreated brick and the brick treated with aluminum oxide.
PUM
Property | Measurement | Unit |
---|---|---|
particle size | aaaaa | aaaaa |
temperature | aaaaa | aaaaa |
porosity | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com