Resist polymer and method for producing the polymer
a polymer and resist technology, applied in the field of resist polymer, can solve the problems of difficult control of temperature-rising rate, difference in amount of generated radical species, and variation in lot-to-lot molecular weight distribution, and achieve excellent solubility and storage stability, and high polymer
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Examples
example 1
Production of Copolymer 1
[0092] A monomer solution was prepared by placing 4800 g of methyl ethyl ketone (hereinafter inscribed as “MEK”) in a tank kept at a nitrogen atmosphere, and dissolving 2080 g of 5-acryloyloxy-2,6-norbornanecarbolactone (hereinafter inscribed as “NLA”) as a repeat unit (B) having a polar group for enhancing adhesion to a semiconductor substrate {hereinafter (B) on a head of the compounds in the examples has the same meaning as this} and 2480 g of 2-ethyl-2-adamantyl methacrylate (hereinafter inscribed as “EAM”) as a repeat unit (A) which is decomposed by an acid to become alkali soluble (hereinafter (A) on a head in the compounds in the examples has the same meaning as this). A polymerization initiator was prepared by placing 700 g of MEK and 80 g of azobisisobutyronitrile (hereinafter inscribed as “AIBN”) in another container kept at a nitrogen atmosphere and dissolving. Into a polymerization tank kept at the nitrogen atmosphere, 3500 g of MEK was put and...
example 2
Production of Copolymer 2 (1)
[0093] A monomer solution was prepared by placing 8000 g of MEK in a tank kept at a nitrogen atmosphere and dissolving 2080 g of (B) NLA, 2480 g of (A) EAM and 2220 g of 3-hydroxy-1-adamantyl acrylate (hereinafter inscribed as “HAA”). Also, a polymerization initiator was prepared by placing and dissolving 1000 g of MEK and 110 g of AIBN in another container kept at the nitrogen atmosphere. Into a polymerization tank kept at the nitrogen atmosphere, 5000 g of MEK was put and the temperature was raised to 80° C. with stirring. Subsequently, the monomer solution and the polymerization initiator solution kept at the temperature of 25 to 30° C. were fed into the polymerization tank kept at 80° C. over 4 hours, respectively. After the completion of feed, the polymerized solution was matured for 2 hours with keeping the polymerization temperature at 80° C., then cooled to room temperature and taken out. Polymer was precipitated from the resulting polymerized ...
example 3
Production of Copolymer 3 (1)
[0094] A monomer solution was prepared by placing 7000 g of MEK in a tank kept at a nitrogen atmosphere and dissolving 2220 g of (B) 5-methacryloyloxy-2,6-norbornanecarbolactone (hereinafter inscribed as “NLM”), 2480 g of EAM and 90 g of methacrylic acid. Also, a polymerization initiator was prepared by placing and dissolving,700 g of MEK and 80 g of AIBN in another container kept at the nitrogen atmosphere. Into a polymerization tank kept at the nitrogen atmosphere, 3300 g of MEK was put and the temperature was raised to 80° C. with stirring. Subsequently, the monomer solution and the polymerization initiator solution kept at the temperature of 25 to 30° C. were fed into the polymerization tank kept at 80° C. over 4 hours, respectively. After the completion of feed, the polymerized solution was matured for 2 hours with keeping the polymerization temperature at 80° C., then cooled to room temperature and taken out. Polymer was precipitated from the res...
PUM
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com