Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Compounds and methods for inhibiting nhe-mediated antiport in the treatment of disorders associated with fluid retention or salt overload and gastrointestinal tract disorders

a technology of gastrointestinal tract disorders and compounds, which is applied in the direction of drug compositions, peptides/protein ingredients, extracellular fluid disorders, etc., can solve the problems of fluid transudation into the lungs and congestive symptoms, increased filling pressure, and shortness of breath

Inactive Publication Date: 2015-10-22
ARDELYX
View PDF1 Cites 4 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

This patent describes a compound or composition that can be used to treat various disorders or symptoms such as hypertension, hypertension associated with dietary salt intake, fluid overload, congestive heart failure, end stage renal disease, sodium overload, interdialytic weight gain in ESRD patients, edema, gastrointestinal tract disorder-related pain, visceral hypersensitivity, inflammation of the gastrointestinal tract, and gastrointestinal transit time. The compound or composition can be administered through various methods such as oral or injection.

Problems solved by technology

Long standing hypertension, particularly when it is poorly controlled, may lead to CHF.
Filling pressures may eventually increase to a level that causes transudation of fluid into the lungs and congestive symptoms (e.g., edema, shortness of breath).
Most people eat considerably more than this, so it is likely that a person with congestive heart failure will need to find ways to reduce dietary salt.
By counteracting the volume increase, diuretics reduce cardiac output; however, fatigue and dizziness may replace CHF symptoms.
However, these drugs are not effective when the glomerular filtration rate (GFR) is less than 30 ml / min.
Additionally, thiazides, as well as other diuretics, may cause hypokalemia.
Diuretic resistance may be caused by poor availability of the drug.
2008 April 10; 125(2): 246-253) it was shown that chronic diuretic use was associated with significantly increased mortality and hospitalization in ambulatory older adults with heart failure receiving angiotensin converting enzyme inhibitor and diuretics.
Angiotensin II also causes aldosterone to be released, causing reabsorption of Na and concomitant passive reabsorption of fluid, which in turn causes the blood volume to increase.
However, since ACE inhibitors lower aldosterone, the K-secreting hormone, one of the side-effects of their use is hyperkalemia.
In addition, ACE inhibitors have been show to lead to acute renal failure in certain categories of CHF patients.
The quasi-absence of renal function and ability to eliminate salt and fluid results in large fluctuations in body weight as fluid and salt build up in the body (sodium / volume overload).
High fluid overload is also worsened by heart dysfunction, specifically CHF.
However, symptomatic intradialytic hypotension (SIH) may occur when patients are over-dialyzed.
Like in hypertensive and CHF patients, dietary restrictions of salt and fluid are highly recommended but poorly followed because of the poor palatability of low-salt food
All these monogenic hypertensive syndromes are virtually confined to mutated genes involving gain of function of various components of the renin-angiotensin-aldosterone system, resulting in excessive renal sodium retention.
This complication significantly impairs the quality of life of cirrhotic patients and is also associated with poor prognosis.
This event, through a decrease in effective blood volume, leads to a drop in arterial pressure.
Splanchnic vasodilation increases splanchnic lymph production, exceeding the lymph transportation system capacity, and leads to lymph leakage into the peritoneal cavity.
Unfortunately, fluid retention has emerged as the most common and serious side-effect of TZD's and has become the most frequent cause of discontinuation of therapy.
However TZD-induced fluid retention is resistant to loop diuretics or thiazide diuretics, and combination of peroxisome proliferator-activated receptor (PPAR) alpha with PPAR gamma agonists, which were proposed to reduce such fluid overload, are associated with major adverse cardiovascular events.
Sorbitol and polyethyleneglycol triggers osmotic diarrhea with low levels of secreted electrolytes; thus, their utility in removing sodium salt from the GI tract is limited.
However, some laxatives, such as phenolphthalein, are not viable options for the chronic treatment of fluid overload, due to the potential risk of carcinogenicity in humans.
Furthermore, laxatives may not be used chronically, as they have been shown to be an irritant and cause mucosal damage.
However, for such polymers to effectively remove significant quantities of fluid, they must desirably resist the static and osmotic pressure range existing in the GI tract.
Such polymers may collapse in a normal colon where the salt absorption process is intact, hence removing a modest quantity of fluid and thereby salt.
However, with the exception of Kayexalate™ (or Kionex™), which is a polystyrene sulfonate salt approved for the treatment of hyperkalemia, cation exchange resins have very limited use as drugs, due at least in part to their limited capacity and poor cation binding selectivity.
Such resins may also cause constipation.
Calcium supplements have shown to be beneficial in ostoporotic patients to restore bone density but compliance is poor because of calcium-induced constipation effects.
Many of these treatment options are inadequate, as they may be habit forming, ineffective in some patients, may cause long term adverse effects, or otherwise are less than optimal.
However, such research failed to develop or recognize the value or importance of NHE inhibitors that are not absorbed (i.e., not systemic) and target the gastrointestinal tract, as disclosed recently in WO 2010 / 078449.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Compounds and methods for inhibiting nhe-mediated antiport in the treatment of disorders associated with fluid retention or salt overload and gastrointestinal tract disorders
  • Compounds and methods for inhibiting nhe-mediated antiport in the treatment of disorders associated with fluid retention or salt overload and gastrointestinal tract disorders
  • Compounds and methods for inhibiting nhe-mediated antiport in the treatment of disorders associated with fluid retention or salt overload and gastrointestinal tract disorders

Examples

Experimental program
Comparison scheme
Effect test

example 1

N1,N7-bis(2-(2-(2-(3-((S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-4-(3-(2-(2-(2-(3-((S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethylamino)-3-oxopropyl)-4-nitroheptanediamide

[0360]

[0361]Example 1: To a solution of A (972 mg, 193 mmol) and DIEA (657 μL, 3.87 mmol) in DCM (20 mL) was added bis(perfluorophenyl) 4-nitro-4-(3-oxo-3-(perfluorophenoxy)propyl)heptanedioate (intermediate B, 500 mg, 0.645 mmol) and the resulting solution stirred at room temperature for 20 h. The solvent was removed under reduced pressure and the resulting residue purified by automated flash column silica gel chromatography using a gradient of DCM:MeOH (99:1 to 9:1) to give the title compound as a yellow solid (516 mg, 46%) after the solvent was removed. 1H-NMR (400 MHz, CD3OD) δ 7.79-7.75 (m, 3H), 7.70 (t, J=1.5 Hz, 3H), 7.53 (t, J=7.6 Hz, 3H), 7.50-7.45 (m, 3H), 7.34 (d, J=2.1 Hz, 3H), 6.80 (s, 3H), 4.44-...

example 2

4-amino-N1,N7-bis(2-(2-(2-(3-((S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethyl)-4-(3-(2-(2-(2-(3-((S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethylamino)-3-oxopropyl)heptanediamide

[0362]

[0363]Example 2, method A: To a solution of N1,N1-bis(2-aminoethyl)ethane-1,2-diamine (1.21 mL, 8.06 mmol) in DMF (2 mL) was slowly added a solution of intermediate D (7.75 g, 4.03 mmol) in DMF (10 mL) and the resulting mixture stirred for 30 min at room temperature. The solution was cooled to 0° C. and 1 M aqueous TFA was added (20 mL), until the solution reached pH=1. The solution was then diluted with 1:1 MeCN:H2O to give a final volume of 60 mL. The solution was purified by automated flash column reverse phase chromatography using a gradient of H2O 0.05% TFA: CH3CN 0.05% TFA (80:20 to 60:40) and detection by UV at 254 nm in three batches. The fractions containing pure material were concentrated and ...

example 3

1-(3-((S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)-13,13-bis(3-(2-(2-(2-(3-((S)-6,8-dichloro-2-methyl-1,2,3,4-tetrahydroisoquinolin-4-yl)phenylsulfonamido)ethoxy)ethoxy)ethylamino)-3-oxopropyl)-10-oxo-3,6-dioxa-9,14-diazahexadecane-16-sulfonic acid

[0365]

[0366]Example 3: Taurine (9.2 mg, 0.074 mmol) was dissolved in H2O (200 μL), to which was added DIEA (26 μL, 0.15 mmol), followed by DMF (800 μL). To the resulting solution was added N,N′-disuccinimidyl carbonate (19 mg, 0.074 mmol) and the solution stirred at 50° C. for 1. Example 2 (25 mg, 0.015 mmol) was then added and the solution stirred for 18 h at 50° C. The solution was then diluted with H2O and acidified with TFA, then purified by preparative HPLC with a C18 silica gel stationary phase using a gradient of H2O 0.05% TFA:CH3CN 0.05% TFA (80:20 to 40:60) and detection by UV at 254 nm to give the title compound tri-TFA salt (10 mg, 30% yield) as a white solid. 1H-NMR (400 MHz, CD3OD) δ 7.91-7.8...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
Pressureaaaaaaaaaa
Pressureaaaaaaaaaa
Massaaaaaaaaaa
Login to View More

Abstract

The present disclosure is directed to compounds and methods for the treatment of disorders associated with fluid retention or salt overload, such as heart failure (in particular, congestive heart failure), chronic kidney disease, end-stage renal disease, liver disease, and peroxisome proliferator-activated receptor (PPAR) gamma agonist-induced fluid retention. The present disclosure is also directed to compounds and methods for the treatment of hypertension. The present disclosure is also directed to compounds and methods for the treatment of gastrointestinal tract disorders, including the treatment or reduction of pain associated with gastrointestinal tract disorders.

Description

RELATED APPLICATIONS[0001]This application is a. National Stage application under 35 U.S.C. §371 of International Application No. PCT / GB2013 / 052193, filed Aug. 20, 2013, which claims the benefit of priority to U.S. Provisional Patent Application No. 61 / 691,637, filed Aug. 21, 2012. The contents of the foregoing applications are hereby incorporated by reference in their entirety.BACKGROUND[0002]1. Field[0003]The present disclosure is directed to compounds that are substantially active in the gastrointestinal tract to inhibit NHE-mediated antiport of sodium ions and hydrogen ions, and the use of such compounds in the treatment of disorders associated with fluid retention or salt overload and in the treatment of gastrointestinal tract disorders, including the treatment or reduction of pain associated with a gastrointestinal tract disorder.[0004]2. Description of the Related Art[0005]Disorders Associated with Fluid Retention and Salt Overload[0006]According to the American Heart Associa...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): C07D217/18A61K45/06A61K31/5377A61K47/38A61K31/496A61K47/32A61K47/36A61K31/4725C07D401/14
CPCC07D217/18A61K31/4725A61K45/06A61K31/5377A61K47/38A61K31/496A61K47/32A61K47/36C07D401/14C07D217/14A61K47/60A61K47/55A61P1/00A61P1/04A61P1/10A61P13/12A61P31/12A61P43/00A61P7/10A61P9/04A61P9/12Y02A50/30C07D217/04
Inventor BELL, NOAHCARRERAS, CHRISTOPHERCHARMOT, DOMINIQUECHEN, TAOLEADBETTER, MICHAELJACOBS, JEFFREYLEWIS, JASON
Owner ARDELYX
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products