Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Methods and apparatuses for high pressure gas annealing

a gas annealing and high-pressure technology, applied in lighting and heating apparatus, semiconductor/solid-state device testing/measurement, furnaces, etc., can solve the problems of confined reaction gas, inflammable, toxic, or otherwise dangerous, and achieve the effect of improving device performance, reducing the number of dangling bonds, and increasing the lifetime and transconductance of the devi

Inactive Publication Date: 2007-08-16
PSMC
View PDF24 Cites 81 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0021] The present invention relates to annealing systems and other systems which use certain gases at high pressures. In particular, embodiments of the present invention pertain to methods and apparatuses for annealing semiconductor devices in a high pressure gas environment. According to at least one embodiment of the present invention, high pressure hydrogen or deuterium gas is used in various annealing processes, such as high-K gate dielectric process anneal, post-metallization sintering anneal, and forming gas anneal. The use of high pressure gas can significantly improve the device performance. For example, it could increase the device's lifetime and its transconductance, and it can decrease the number of dangling bonds. One of the main advantages of the high pressure gas annealing is that these improvements in the device performance can be achieved with a reduced thermal budget cost at a given temperature and / or a given processing time, which is an essential requirement for the advanced device technology.
[0024] According to an embodiment of the present invention, a method is disclosed for designing and manufacturing high pressure hydrogen, deuterium, and other toxic gas (100% purity or partial pressure) processing systems suitable for high-K gate dielectric anneal, post metallization sintering anneal, and forming gas anneal in the semiconductor fabrication process. The method overcomes many of the major safety problems associated with pressurized hydrogen / deuterium and other inflammable or toxic gases such as fluorine, ammonia, and chloride, and it can significantly improve semiconductor device performance in various aspects such as increased device lifetime, higher transconductance, and dangling bond reduction, etc.
[0026] As stated earlier, the main safety concern is a possibility of the gas leakage from the annealing vessel. The likelihood of leakage increases under high pressure conditions. When the hydrogen gas in high concentration is exposed to oxygen in the atmosphere, for example, it can ignite fire or explode. Embodiments of the present invention employ various methods and techniques to prevent hydrogen or other processing gas from releasing directly into the atmosphere, or otherwise reduce the possibility of its exposure to the atmosphere during operations of the annealing system. In particular, methods and techniques are used to minimize gas leakage while delivering and processing the high pressure hydrogen / deuterium and other toxic gas in the annealing vessel or any of the subsystems connected to the vessel. Embodiments of the present invention can be used in the production environment.
[0029] In another aspect of the present invention, a safe venting system is provided, where the pressurized hydrogen, which could be up to 100% pure, is released into the atmosphere after the annealing process. In some embodiments, the hydrogen gas is diluted by another gas during the exhaust process. According to one embodiment, the gas from the outer chamber is released at the same time and mixed with the hydrogen / deuterium gas or other toxic or inflammable gas from the inner chamber. According to another embodiment, other inert gas such as nitrogen is added during the venting process thereby further reducing the concentration of the reactive gas exhausted from the annealing vessel.

Problems solved by technology

In these embodiments, a reactive gas, which may be inflammable, toxic, or otherwise dangerous, is confined in the inner chamber.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Methods and apparatuses for high pressure gas annealing
  • Methods and apparatuses for high pressure gas annealing
  • Methods and apparatuses for high pressure gas annealing

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0043] The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which various exemplary embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Likewise, for purposes of explanation, numerous specific details are set forth in the following description in order to provide a thorough understanding of the present invention. It will be evident, however, to one skilled in the art that the present invention may be practiced without these specific details.

[0044] One of the fundamental requirements in designing high pressure processing vessels using hydrogen or other hazardous gas is to ensure the safety. Under a controlled environment, the ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

No PUM Login to View More

Abstract

Novel methods and apparatuses for annealing semiconductor devices in a high pressure gas environment. According to an embodiment, the annealing vessel has a dual chamber structure, and potentially toxic, flammable, or otherwise reactive gas is confined in an inner chamber which is protected by pressures of inert gas contained in the outer chamber. The incoming gas delivery system and exhaust gas venting system are likewise protected by various methods. Embodiments of the present invention can be used, for example, for high-K gate dielectric anneal, post metallization sintering anneal, and forming gas anneal in the semiconductor manufacturing process.

Description

BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention [0002] The present invention generally relates to semiconductor manufacturing process. More particularly, the present invention pertains to methods and apparatuses for high pressure gas annealing. [0003] 2. Description of the Related Art [0004] During the semiconductor manufacturing process, various different thermal treatments are performed on a semiconductor wafer, for example, during or following oxidation, nitridation, silicidation, ion implants, and chemical vapor deposition processes, to achieve effective reaction with the interface as well as the bulk of the semiconductor wafer. A hydrogen or deuterium passivation process is also a known practice performed at elevated temperature, typically at around 400° C.˜500° C. [0005] Key determining factors for effective reaction not only include the process temperature, but also the processing time and the concentration of a particular gas or a mixture of gases used for a par...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
IPC IPC(8): H01L21/00F27D11/00
CPCH01L21/324H01L22/12H01L2924/0002H01L2924/00
Inventor KIM, SANG-SHINRIVERA, MANUEL SCOTTHONG, SUK-DONG
Owner PSMC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products