Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Decontamination solution and its use for denaturation, modification, degradation, solubilisation and removal of proteins, nucleic acid molecules and microorganisms

a decontamination solution and technology for nucleic acid molecules, applied in the field of decontamination solutions, can solve the problems of incomplete removal, inappropriate amplification methods, remaining modified molecules, etc., and achieve the effect of rapid and massive degradation of biomolecules and ensured efficient decontamination solution according to invention

Inactive Publication Date: 2009-01-29
MULTIBIND BIOTEC
View PDF7 Cites 8 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0017]By applying natural anti-oxidants in combination with metal ions and surface-active agents, surprisingly, it was found that different vitamins in combination with metal ions and detergents result in an extremely fast and massive strand breakages and modifications in nucleic acid molecules and proteins. This surprising effect leads to efficient killing of microorganisms by inactivation and degradation of their genetic information and proteins. Especially surprising and new is the finding that the three component system of this invention shows inactivation and degradation in the entire pH range of 2 to 8.5 with an essentially comparable efficiency. Since one can work within a comparatively mild range of pH, the solution according to the invention prevents the surface to be treated from damage and is also skin-compatible for the user. By spraying, rubbing or immersion in solutions of the three components, proteins and nucleic acids are denatured, solubilised, inactivated, degraded and removed and thereby also microorganisms are killed with a high efficiency.
[0018]In an advantageous embodiment of the invention, it is provided that the mixture has a pH value ranging between pH 3 and 7, preferably between pH 4 and 6. In such pH ranges the solution according to the invention is stable over a long period of time and allows for very efficient degradation of nucleic acids. Additionally, the skin-compatibility of the solution according to the invention is optimal in the range between pH 4 and 6.
[0024]The efficient action of the new three component system is even more surprising as it is proven that the different isolated substances alone do not exhibit a special degradation effect and also the mixtures of the components outside the range of the invention are not effective or do only show an unsatisfactory effect. Only the combination of vitamins with metal ions and detergents, preferably in an appropriate mixture, results in a synergistic effect and in a rapid and massive degradation of the biomolecules. In particular, by keeping the correct preferred concentrations, an efficient activity of the decontamination solution according to the invention is ensured.
[0028]The new and advantageous buffer system with carbonate and derivatives of succinic acid is especially suitable for the decontamination solution of the present invention. The different mixtures with pH values between pH 2 and 8.5 each provide clear solutions of a light yellow to light brown color that are stable over longer periods of time and that also show in particular in the pH range of pH 4.5 to pH 6 a very efficient degradation of DNA molecules as demonstrated in comparison to the strong mineralic 0.5 M phosphoric acid of pH 1.5, as shown in FIG. 5.

Problems solved by technology

Therefore already for a longer time many different decontamination solutions exist that use aggressive chemical agents like for example formaldehyde, alcohols, phenols, sodium azide, sodium hypochloride against microorganisms or strong oxidizing agents like for example hypochloride, bleaching substances or mineralic acids that denature proteins and modify nucleic acids thereby rendering them inappropriate for amplification methods like for example the polymerase chain reaction (PCR), nick translation by the klenow polymerase, strand-displacement amplification, ligase chain reaction, transcription-mediated amplification, rolling-circle-amplification and many others more.
The major disadvantages of these solutions and methods are the only selective actions against proteins, DNA or microorganisms and the incomplete removal of all nucleic acids molecules, the remaining modified molecules, the only partial degradation and the corrosive effect of the applied chemicals against equipment, instruments, surfaces and also against skin and mucous membranes of the customer.
A limited improvement of the efficiency of these methods was achieved by combining the agents in the solution with surface-active chemicals like detergents.
Still the problem of the aggressive chemical substances and the incomplete destruction and removal of nucleic acids, proteins and microorganisms remains.
The disadvantages of the currently known decontamination solutions and methods are their only limited action against different biological molecules like proteins or nucleic acids or only anti-microbial actions and the highly corrosive and aggressive chemical potentials in combination with harmful properties that cause severe health problems.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Decontamination solution and its use for denaturation, modification, degradation, solubilisation and removal of proteins, nucleic acid molecules and microorganisms
  • Decontamination solution and its use for denaturation, modification, degradation, solubilisation and removal of proteins, nucleic acid molecules and microorganisms
  • Decontamination solution and its use for denaturation, modification, degradation, solubilisation and removal of proteins, nucleic acid molecules and microorganisms

Examples

Experimental program
Comparison scheme
Effect test

Embodiment Construction

[0039]FIGS. 1 to 5 show the efficient degradation of DNA molecules by the new three component system in comparison with known other solutions. Identical aliquots of DNA plasmids (YEp351) were treated for 2 minutes with the listed solutions. Afterwards the DNA samples were denatured and the single-stranded DNA molecules were separated by gel electrophoresis on an agarose gel (1%). After staining with ethidium bromide the listed pictures were produced. The control shows intact plasmid DNA after treatment with sterile water. Introduction of nicks into the DNA strand results in a reduction of the size and molecular weight of the respective DNA molecules. This effect can be identified in the gel by comparison with the control and the molecular weight marker. In each sample 5 μg DNA were present in 5 μl sterile Tris buffer (1 mM; pH 8.0) and were treated for 2 minutes at room temperature with 5 μl of the listed solutions. Subsequently the samples were mixed with 5 μl 100 mM Tris (pH 12) a...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
pHaaaaaaaaaa
pHaaaaaaaaaa
pHaaaaaaaaaa
Login to View More

Abstract

The invention concerns a three component system comprising surface-active substances, vitamins and metal ions for efficient destruction and removal of contaminating proteins, nucleic acids and microorganisms from surfaces like for example laboratory benches, floors, equipment and instruments. These non-corrosive and non-toxic solutions for removal of proteins, nucleic acids and microorganisms are applied by spraying, rubbing or immersion of contaminated surfaces thereby destroying, solubilizing inactivating and removing proteins and nucleic acids. In that way also microorganisms are killed with high efficiency and at the same time all genetic information is inactivated.

Description

BACKGROUND OF THE INVENTION[0001]The invention concerns a decontamination solution for the treatment of surfaces that are contaminated by unwanted proteins, nucleic acid molecules or microorganisms. The invention further concerns the use of said decontamination solution and a suitable buffer system.[0002]The dynamic developments in molecular biology stresses the importance of new methods and techniques for detection and amplification of DNA molecules or proteins. [Sambrook, J. et al., eds (1989) Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.]. Latest examples concern medical diagnostics, forensic analysis and biomedical research.[0003]With the invention of the polymerase chain reaction (PCR) it is even possible to detect single molecules. A new problem of the extreme sensitivity of these new detection methods is the contamination of surfaces in laboratories, on equipment or working materials with unwanted nucleic acid m...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): A01N55/02C11D3/02A01P1/00
CPCA01N43/08A01N43/78A01N57/16A01N59/16A01N31/14A01N2300/00A61P31/02A61P43/00A01N31/02A01N43/76
Inventor LISOWSKY, THOMASESSER, KARLHEINZLISOWSKY, RICHARD
Owner MULTIBIND BIOTEC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products