Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

10581 results about "Laboratory facility" patented technology

A laboratory (UK: /ləˈbɒrətəri/, US: /ˈlæbərətɔːri/; informally, lab) is a facility that provides controlled conditions in which scientific or technological research, experiments, and measurement may be performed.

System and method for integrating and validating genotypic, phenotypic and medical information into a database according to a standardized ontology

The system described herein enables clinicians and researchers to use aggregated genetic and phenotypic data from clinical trials and medical records to make the safest, most effective treatment decisions for each patient. This involves (i) the creation of a standardized ontology for genetic, phenotypic, clinical, pharmacokinetic, pharmacodynamic and other data sets, (ii) the creation of a translation engine to integrate heterogeneous data sets into a database using the standardized ontology, and (iii) the development of statistical methods to perform data validation and outcome prediction with the integrated data. The system is designed to interface with patient electronic medical records (EMRs) in hospitals and laboratories to extract a particular patient's relevant data. The system may also be used in the context of generating phenotypic predictions and enhanced medical laboratory reports for treating clinicians. The system may also be used in the context of leveraging the huge amount of data created in medical and pharmaceutical clinical trials. The ontology and validation rules are designed to be flexible so as to accommodate a disparate set of clients. The system is also designed to be flexible so that it can change to accommodate scientific progress and remain optimally configured.

System and method for significant dust detection and enhancement of dust images over land and ocean

A new processing capability for dust enhancement over land or water using image data from the Sea-viewing Wide Field of View Sensor (SeaWiFS) has been developed for Naval meteorology / oceanography (MetOc) operations support. The data are captured via direct broadcast high-resolution picture transmission (HRPT) at Navy Regional Centers in Rota, Bahrain, and Yokosuka, and processed at the Naval Research Laboratory in Monterey. The raw data are calibrated, corrected for missing lines and clutter, corrected for molecular scatter contamination, and enhanced through multispectral combination to yield value added products. The processing has been automated completely such that products, generated upon receipt of data, are hosted upon a password protected website typically 60 to 90 minutes from time of initial capture. This invention summarizes the SeaWiFS instrument capabilities, the protocol followed for automated near real-time processing, a physical basis for the NRL enhancements, and specific examples of the products with extension to over-land dust enhancement as enabled by MODIS. It closes with a glimpse of the potential utility of these products from the perspective of the warfighter.

Process for comprehensive surgical assist system by means of a therapy imaging and model management system (TIMMS)

This invention provides a process and system for a comprehensive surgical assist system, called a Therapy Imaging and Model Management System (TIMMS), which combines and integrates all of the necessary information and communication technology; workflow analysis, data processing and data synthesis; interactive interfaces between surgeon and mechatronic devices; and, cognitive agents; to provide comprehensive assistance and guidance throughout complex medical and surgical therapies, such as image guided surgery. The components of this invention, which are modular, scalable and may be distributed in location, act synergistically to provide functionality and utility that exceeds the sum of its individual parts.
A method of performing surgery on a patient comprising the step of comparing a chosen patient's data to statistical data in a repository of patient data to develop a patient specific model, wherein the data comprises information from two or more sub databases selected from the group consisting of workflow data, electronic medical records, diagnostic data, biological data, measurement data, anatomical data, physiological data, genetic data, molecular data, imaging data, chemical data, clinical laboratory data, simulated data, coordinate data and surgical result and wherein the patient specific model aids in the preoperative, operative or post operative phase of surgery performed in real time on the patient.

Multiple purpose, portable apparatus for measurement, analysis and diagnosis

The present invention pertains to a portable apparatus for quantitatively measuring the concentration of specific substances in test samples of a lateral flow or microplate assay in medical, biomedical and chemical applications, and for making subsequent analysis and diagnosis. The portable apparatus includes a sample tray for carrying and aligning the test sample in the apparatus; a enclosure that may also serves as the frame of the apparatus; a digital image acquisition system that is used to obtain the digital image of the test sample on the sample tray; and a data display, processing, and analysis unit that is a general purpose or dedicated computer, such as a handheld computer (HHC), a pocket personal computer (PPC), a personal digital assistant (PDA), a palm-top computer, a laptop computer, or a dedicated microprocessor and associated hardware, for measuring the concentration of specific substances in the test sample, and making subsequent analysis and diagnosis, based on the measurement, statistical data, prior knowledge and mathematical model. The stated enclosure and frame, the digital image acquisition system, and the data display, processing and analysis unit are integrated to form the portable apparatus for various applications. The integrated apparatus of this invention, with a possible name—Portable Intelligent Multi-Diagnoser (PIMD), thus forms a portable and multiple-purpose tool for measuring the concentration of specific substances in test samples, and making subsequent analysis and diagnosis in a variety of settings, such as a mobile site, point of care or near patient care, and small laboratories.
Owner:MA JIE +1

Coding and Decoding: Seismic Data Modeling, Acquisition and Processing

A method for coding and decoding seismic data acquired, based on the concept of multishooting, is disclosed. In this concept, waves generated simultaneously from several locations at the surface of the earth, near the sea surface, at the sea floor, or inside a borehole propagate in the subsurface before being recorded at sensor locations as mixtures of various signals. The coding and decoding method for seismic data described here works with both instantaneous mixtures and convolutive mixtures. Furthermore, the mixtures can be underdetemined [i.e., the number of mixtures (K) is smaller than the number of seismic sources (I) associated with a multishot] or determined [i.e., the number of mixtures is equal to or greater than the number of sources). When mixtures are determined, we can reorganize our seismic data as zero-mean random variables and use the independent component analysis (ICA) or, alternatively, the principal component analysis (PCA) to decode. We can also alternatively take advantage of the sparsity of seismic data in our decoding process. When mixtures are underdetermined and the number of mixtures is at least two, we utilize higher-order statistics to overcome the underdeterminacy. Alternatively, we can use the constraint that seismic data are sparse to overcome the underdeterminacy. When mixtures are underdetermined and limited to single mixtures, we use a priori knowledge about seismic acquisition to computationally generate additional mixtures from the actual recorded mixtures. Then we organize our data as zero-mean random variables and use ICA or PCA to decode the data. The a priori knowledge includes source encoding, seismic acquisition geometries, and reference data collected for the purpose of aiding the decoding processing.
The coding and decoding processes described can be used to acquire and process real seismic data in the field or in laboratories, and to model and process synthetic data.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products