Methods for treating metabolic disorders using fgf

a metabolic disorder and metabolic technology, applied in the field of metabolic disorders treated using fgf, can solve the problems of high incidence of type 2 diabetes, high mortality, morbidity and healthcare expenditure, blood vessel and nerve damage, etc., and achieve the effect of high fa

Inactive Publication Date: 2013-05-09
SALK INST FOR BIOLOGICAL STUDIES
View PDF1 Cites 54 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0013]In some embodiments, the administering is intravenous. In some embodiments, the administering is subcutaneous or intraperitoneal. In some embodiments, the dose of the FGF-1 compound administered is equivalent to 0.01-1 mg FGF-1 per kg body weight of the individual, e.g., equivalent to 0.05-0.1, 0.1-0.2, 0.1-0.4, 0.05, 0.1, 0.2, 0.3, 0.4. 0.5 or higher mg FGF-1 per kg body weight. In some embodiments, the FGF-1 compound is administered once per day or less, e.g., every second day, every third day, every week, every other week, or less.
[0014]In some embodiments, the method further comprises administering a second therapeutic agent to the individual. In some embodiments, the second therapeutic agent is administered at the same time (e.g., in the same composition) as the FGF-1 compound. In some embodiments, the second therapeutic agent is administered at a different time than the FGF-1 compound. In some embodiments, the second therapeutic agent is another treatment for a metabolic disorder (e.g., a TZD). In some embodiments, the second therapeutic agent targets an associated symptom, e.g., pain or high blood pressure.
[0015]Further provided are methods of inducing fatty liver in a food animal, e.g., a bird, such as duck or goose. The methods comprise inhibiting FGF-1 in a food animal. In some embodiments, the method comprises administering an effective amount of an FGF-1 inhibitor to the food animal. In some embodiments, the FGF-1 inhibitor is an antisense compound specific for FGF-1, e.g., an expression vector comprising a sequence encoding the antisense compound. In some embodiments, the FGF-1 inhibitor is an antibody (e.g., Shi et al. (2011) IUBMB Life 63:129). In some embodiments, the FGF-1 inhibitor is an inhibitor of the FGF-1 signaling pathway, e.g., a MAP kinase pathway inhibitor such as PD-098059, PD-161570, PD-173074, SU5402, or SB203580. In some embodiments, the FGF-1 inhibitor is administered more than once, e.g., once / day, or with food. In some embodiments, the FGF-1 inhibitor is administered in combination with a high fat diet. In some embodiments, the method comprises generating an FGF-1 knockout or genetically altered FGF-1 inactive food animal, and feeding the animal with a high fat diet.

Problems solved by technology

Metabolic disorders such as type 2 diabetes, obesity, and all of the related complications, are leading causes of mortality.
The incidence of type 2 diabetes is high and rising and is becoming a leading cause of mortality, morbidity, and healthcare expenditure throughout the world (Amos et al., Diabetic Med.
Prolonged high blood sugar may cause blood vessel and nerve damage.
However, there are numerous side effects associated with the use of TZDs, such as weight gain, liver toxicity, cardiovascular toxicity, upper respiratory tract infection, headache, back pain, hyperglycemia, fatigue, sinusitis, diarrhea, hypoglycemia, mild to moderate edema, fluid retention, and anemia (Moller, Nature, 2001, 414: 821-827).

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Methods for treating metabolic disorders using fgf
  • Methods for treating metabolic disorders using fgf
  • Methods for treating metabolic disorders using fgf

Examples

Experimental program
Comparison scheme
Effect test

example 1

Identification of FGF-1 as a Direct Target of PPARγ

[0179]To identify nuclear hormone receptor (NHR) targets, we used a “Promoter Ontology” screen, which encompasses a validated cDNA expression library including all 49 mouse NHRs combinatorially paired with a large collection of pathway specific promoter-reporter libraries. The pairing facilitates rapid evaluation of the transcriptional regulation of each genetic pathway by any NHR in a given context. Using this high-throughput promoter screen, we screened promoter constructs for members of the FGF family for regulation by the NHRs, and identified FGF-1 as a direct target of PPARγ. More specifically, we identified strong and specific transcriptional regulation of FGF-1 by PPARγ.

[0180]FGF-1A Promoter Characterization.

[0181]The expression of the FGF-1 gene is directed by at least three distinct promoters driving the untranslated exons: 1A, 1B, and 1D, spaced up to 70 kilobase pairs apart (FIG. 1A) (Myers et al., 1993). Alternative spli...

example 2

FGF-1 Protects Against HFD-Induced Insulin Resistance

[0187]Next, we determined the consequences of loss of FGF-1 in vivo, using FGF-1 knockout (KO) mice. FGF-1 KO mice have been studied in the context of wound healing and cardiovascular changes. Neither these mice, nor FGF-1 / FGF2 double KO mice, displayed any significant phenotype under normal feeding conditions (Miller et al., 2000). To study the role of PPARγ-mediated regulation of FGF-1, FGF-1 KO and wild-type littermates were fed a high fat diet (HFD). Although no difference in HFD-induced weight gain was observed (FIG. 4A), FGF-1 KO mice had smaller WAT and larger, steatotic livers, suggesting that FGF-1 KO mice fail to increase their adipose mass and alternatively mobilize fat into the liver (FIG. 4B, C). At the same time, FGF-1 KO mice displayed increased fasting levels of glucose and insulin and increased insulin resistance compared to wild-type littermates as demonstrated by glucose- and insulin-tolerance tests (GTT, ITT), ...

example 3

AKT Signaling is Impaired in WAT of HFD-fed FGF-1 KO Mice

[0188]FGFs signal through four cognate high-affinity tyrosine kinase receptors, designated FGFR-1 to −4, leading to downstream activation of multiple signal transduction pathways, including the MAPK (ERK1 / 2) and PI3K / AKT pathways. These pathways regulate components of the insulin / glucose signaling pathways including activation of glycogen synthase kinase-3 (GSK-3), which regulates glycogen synthesis in response to insulin, and translocation of the glucose transporter GLUT4 (Cho et al., 2001). To investigate the integrity of these signaling pathways, we determined the expression of its critical components in WAT, BAT, liver, and muscle of HFD-fed FGF-1 KO and wild-type mice (FIG. 5). Interestingly, we found that total levels of AKT (and to a lesser extent GSK3(3) were reduced in WAT of HFD-treated FGF-1 KO mice compared to WT mice. In contrast, levels of AKT were normal in liver, BAT, or muscle, and levels of ERK1 / 2 were normal...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
body weightaaaaaaaaaa
pHaaaaaaaaaa
body weightaaaaaaaaaa
Login to view more

Abstract

The method provides methods and compositions for treating metabolic disorders such as impaired glucose tolerance, elevated blood glucose, insulin resistance, dyslipidaemia, obesity, and fatty liver.

Description

CROSS-REFERENCES TO RELATED APPLICATIONS[0001]This application claims priority to U.S. Ser. No. 61 / 325,255; U.S. Ser. No. 61 / 325,261; and U.S. Ser. No. 61 / 325,253, all filed Apr. 16, 2010, the disclosures of which are incorporated herein by reference in their entireties.STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT[0002]This invention was made with government support under award number LT00305 / 2005-L from the Human Frontier Science Program Organization (HFSPO) as well as grants awarded by the National Institutes of Health (NIH) and the Howard Hughes Medical Institute (HHMI). The Government has certain rights in the invention.BACKGROUND OF THE INVENTION[0003]Metabolic disorders such as type 2 diabetes, obesity, and all of the related complications, are leading causes of mortality. These disorders are associated with the excessive nutritional intake and lack of exercise of the Western lifestyle, and increasingly that of the rest of the wor...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Applications(United States)
IPC IPC(8): A61K38/18A61K45/06
CPCA61K9/0019A61K38/1825A61K45/06A61K2300/00A61K47/60A61K47/61A61K31/4439A61P1/16A61P3/00A61P3/04A61P3/06A61P43/00A61P3/10
Inventor JONKER, JOHAN W.DOWNES, MICHAELEVANS, RONALD M.SUH, JAEMYOUNG
Owner SALK INST FOR BIOLOGICAL STUDIES
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products