Molecular Sieve/Polymer Hollow Fiber Mixed Matrix Membranes
- Summary
- Abstract
- Description
- Claims
- Application Information
AI Technical Summary
Benefits of technology
Problems solved by technology
Method used
Examples
example 1
[0054]A “Control” poly(DSDA-PMDA-TMMDA)-PES(50:50) (abbreviated as Control 1) polymer membrane was prepared. 3.0 g of poly(DSDA-PMDA-TMMDA) polyimide polymer and 3.0 g of polyethersulfone (PES) were dissolved in a solvent mixture of NMP and 1,3-dioxolane by mechanical stirring for 2 hours to form a homogeneous casting dope. The resulting homogeneous casting dope was allowed to degas overnight. A “Control 1” blend polymer membrane was prepared from the bubble free casting dope on a clean glass plate using a doctor knife with a 20-mil gap. The membrane together with the glass plate was then put into a vacuum oven. The solvents were removed by slowly increasing the vacuum and the temperature of the vacuum oven. Finally, the membrane was dried at 200° C. under vacuum for at least 48 hours to completely remove the residual solvents to form “Control 1”.
example 2
[0055]23% AlPO-14 / poly(DSDA-PMDA-TMMDA)-PES(50:50) mixed matrix membranes were prepared. A series of 23% AlPO-14 / poly(DSDA-PMDA-TMMDA)-PES(50:50) MMMs with different thicknesses and containing 23 wt-% of dispersed AlPO-14 molecular sieve particles (the particle size of AlPO-14≦5 μm, AlPO-14 / (AlPO-14+PES+poly(DSDA-PMDA-TMMDA))=23 wt-%) in poly(DSDA-PMDA-TMMDA) polyimide and PES blend continuous polymer matrix were prepared as follows:
[0056]1.8 g of AlPO-14 molecular sieve particles were dispersed in a mixture of 11.6 g of NMP and 17.2 g of 1,3-dioxolane by mechanical stirring and ultrasonication for 1 hour to form a slurry. Then 0.6 g of PES was added in the slurry. The slurry was stirred for at least 1 hour to completely dissolve PES polymer. After that, 3.0 g of poly(DSDA-PMDA-TMMDA) polyimide polymer and 2.4 g of PES polymer were added to the slurry and the resulting mixture was stirred for another 2 hours to form a stable casting dope containing 23 wt-% of dispersed AlPO-14 in th...
example 3
[0058]CO2 / CH4 separation properties of Control 1, MMM 1, MMM 2, MMM 3, MMM 4, MMM 5, and MMM 6 were determined. The effect of the thickness of 23% AlPO-14 / poly(DSDA-PMDA-TMMDA)-PES(50:50) MMMs on their CO2 / CH4 separation performance has been studied. MMMs with six different thicknesses from 72.6 μm to 4.57 μm have been prepared using AlPO-14 molecular sieves with particle size ≦5 μm (table below). These MMMs including MMM 1, MMM 2, MMM 3, MMM 4, and MMM 5 with thicknesses from 72.6 μm to 6.35 μm, which are greater than the largest particle size of AlPO-14 molecular sieve particles, have shown a similar ˜40% increase in αCO2 / CH4 and ˜55% increase in PCO2 compared to a poly(DSDA-PMDA-TMMDA)-PES blend polymer membrane (Control 1) (PCO2=10.9 Barrers and αCO2 / CH4=23.2). However, MMM 6 with thickness of 4.57 μm, which is less than the largest particle size of AlPO-14 molecular sieve particles, has shown major defects and no CO2 / CH4 selectivity has been observed. These results have demonst...
PUM
Property | Measurement | Unit |
---|---|---|
Fraction | aaaaa | aaaaa |
Thickness | aaaaa | aaaaa |
Diameter | aaaaa | aaaaa |
Abstract
Description
Claims
Application Information
- R&D Engineer
- R&D Manager
- IP Professional
- Industry Leading Data Capabilities
- Powerful AI technology
- Patent DNA Extraction
Browse by: Latest US Patents, China's latest patents, Technical Efficacy Thesaurus, Application Domain, Technology Topic, Popular Technical Reports.
© 2024 PatSnap. All rights reserved.Legal|Privacy policy|Modern Slavery Act Transparency Statement|Sitemap|About US| Contact US: help@patsnap.com