Radiation sensitive resin composition

a technology of radiofrequency and resin composition, applied in the direction of photosensitive materials, instruments, photomechanical equipment, etc., can solve the problems of insufficient theoretical focal depth, large difficulty in fine processing of subhalf microns, and the performance of these resists approaching their limit, etc., to achieve excellent photolithographic process stability, high dry etching resistance, and high precision pattern

Inactive Publication Date: 2001-05-15
JSR CORPORATIOON
View PDF20 Cites 35 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

It is a further object of this invention to provide a radiation sensitive resin composition which is free from volume shrinkage, peeling failure and adhesive failure, can form a high precision pattern and has high dry etching resistance.
It is a still further object of this invention to provide a radiation sensitive resin composition excellent as a resist which can effectively decompose upon irradiation with various radiations to form a pattern which is excellent in photolithographic process stability and has the rectangular shape whose upper part is not thinned.
It is another object of this invention to provide a radiation sensitive resin composition excellent in pattern shape, sensitivity, contrast, developability and the like particularly when it is irradiated with deep ultraviolet rays, X rays or electron beams.

Problems solved by technology

However, the performance of these resists approaches its limit and the use thereof in the fine processing in the order of subhalfmicron is accompanied by a great difficulty.
That is to say, these negative and positive resists have heretofore had such a problem that a sufficient theoretical focal depth cannot be achieved when a fine pattern of 0.35 .gamma.m or less is intended to be formed by a lithographic technique using an ultraviolet ray such as g ray (wavelength: 436 nm) or i ray (wavelength: 365 nm) or the like from a mercury vapor lamp.
However, conventional resists have various problems in respects of pattern shape, sensitivity, contrast, development and the like when deep ultraviolet rays, X rays or electron beams are used.
However, it has ben pointed out that these chemically amplified resists have the respective inherent problems and various difficulties accompany the putting them to practical use.
That is to say, in the system in which a resin having a tert-butyl ester group or a tert-butoxycarbonyl group is used, the chemical reaction based on the catalytic action of the acid generated is accompanied by the liberation of a gas component such as an isobutene gas or a carbon dioxide gas, so that the volume shrinkage is caused upon irradiation with a radiation, and consequently, the pattern shape tends to be distorted and hence the formation of a high precision pattern is difficult.
The system in which a resin having a silyl group is used has a good pattern-formability; however, it has such a disadvantage that as compared with other systems using a resin free from silyl group, it is inferior in peelability from a substrate.
In addition, in the system in which a resin comprising an acrylic acid component is used, there is such a disadvantage that the adhesiveness between the resist and the silicon substrate is insufficient, and there is such a problem that the dry etching resistance is lower than that of a resist using an aromatic resin.
However, since a carboxylic acid is formed in the exposed portion, the solubility-in-alkali-developer rate becomes too high, and there is such a disadvantage that when a resist pattern is actually formed on a substrate, the upper part of the pattern formed becomes too thin to form an ideally rectangular pattern.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Radiation sensitive resin composition
  • Radiation sensitive resin composition
  • Radiation sensitive resin composition

Examples

Experimental program
Comparison scheme
Effect test

synthesis example 1

In 50 g of dioxane were dissolved 20 g of vinylphenol, 20 g of tert-butyl acrylate and 8.5 g of styrene, and then 8.2 g of 2,2'-azobisisobutyronitrile was added thereto, after which the resulting solution was bubbled with a nitrogen gas for 30 minutes. Thereafter, the solution was heated to 60.degree. C. while the bubbling was continued to effect polymerization for seven hours. After the polymerization, the solution was poured into a large amount of hexane to coagulate the polymer and the polymer was then recovered. The polymer was dissolved in acetone and then the resulting solution was poured into hexane again to coagulate the polymer. This operation was repeated several times to remove completely the unreacted monomers, after which the polymer was dried at 50.degree. C. under vacuum overnight. The polymer thus obtained was white and the yield was 55%. As a result of .sup.1 H-NMR and .sup.13 C-NMR analyses, it was found that the composition of the polymer was such that vinylphenol...

synthesis example 2

The same procedure as in Synthesis Example 1 was repeated, except that 22 g of isopropenylphenol was substituted for the 20 g of vinyphenol, to synthesize a polymer. The polymer obtained was white and the yield was 45%. As a result of .sup.1 H-NMR and .sup.13 C-NMR analyses, it was found that the composition of the polymer was such that isopropenylphenol, tert-butyl acrylate and styrene were copolymerized at a ratio of approximately 2:3:1. Mw was 28,000 and Mw / Mn was 2.6. This polymer is referred to hereinafter as Polymer (II).

synthesis example 3

The same procedure as in Synthesis Example 1 was repeated, except that 15 g of tert-butyl methacrylate was substituted for the 20 g of tert-butyl acrylate and 3 g of methyl methacrylate was substituted for the 8.5 g of styrene, to synthesize a polymer. The polymer obtained was white and the yield was 60%. As a result of .sup.1 H-NMR and .sup.13 C-NMR analyses, it was found that the composition of the polymer was such that vinylphenol, tert-butyl methacrylate and methyl methacrylate were copolymerized at a ratio of approximately 5:3:1. Mw was 22,000 and Mw / Mn was 2.7. This polymer is referred to hereinafter as Polymer (III).

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
wavelengthaaaaaaaaaa
wavelengthaaaaaaaaaa
temperatureaaaaaaaaaa
Login to view more

Abstract

A radiation sensitive resin composition which comprises (A) a polymer which becomes alkali-soluble in the presence of an acid and (B) a radiation sensitive acid generator which generates an acid upon irradiation with a radiation, said polymer (A) comprising two recurring units represented by the general formulas (1) and (2) and a recurring unit which acts to reduce the solubility of the polymer is an alkali developer after the irradiation:wherein R1 represents a hydrogen atom or a methyl group and R2 represents a hydrogen atom or a methyl group. Said composition provides a chemically amplified positive resist which can give a fine pattern with a good pattern shape, and said resist is freed from volume shrinkage, peeling failure and adhesive failure, is excellent in dry etching resistance and effectively reacts with various radiations to give a good pattern shape which is excellent in photolithographic process stability, said pattern shape having no thinned portion at the upper part.

Description

BACKGROUND OF THE INVENTIONThis invention relates to a radiation sensitive resin composition. More particularly, it relates to a radiation sensitive resin composition which can be used as a resist particularly suitable for fine processing using a radiation such as ultraviolet ray, deep ultraviolet ray, X ray or charged particle beam.In the field of fine processing, a representative of which is the production of an integrated circuit device, a lithographic technique is now being developed which enables fine processing in the order of subhalfmicron to be effected with good reproducibility. Representative resists which have recently been used in the lithographic process include positive resists using an alkali-soluble resin such as a novolak resin or the like and a quinonediazide type radiation sensitive compound. However, the performance of these resists approaches its limit and the use thereof in the fine processing in the order of subhalfmicron is accompanied by a great difficulty.T...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Patents(United States)
IPC IPC(8): G03F7/039G03F7/004G03F7/028H01L21/027
CPCG03F7/0045G03F7/039Y10S430/106Y10S430/11Y10S430/111G03C1/00
Inventor YAMACHIKA, MIKIOKOBAYASHI, EIICHITSUJI, AKIRAOTA, TOSHIYUKI
Owner JSR CORPORATIOON
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products