pyrolysis gasoline c 6 -c 8 Distillate oil selective hydrogenation method

A C6-C8, pyrolysis gasoline technology, applied in the field of nickel-based selective hydrogenation catalysts, can solve the problems of poor catalyst stability, reduced catalyst activity selectivity, nickel aluminate generation and other problems

Active Publication Date: 2020-11-27
陈明海
View PDF13 Cites 1 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Problems solved by technology

Al 2 o 3 When used as a carrier, in the process of reducing nickel ions at high temperature, it is easy to cause the formation of nickel aluminate, thereby reducing the catalyst activity selectivity and poor catalyst stability

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Examples

Experimental program
Comparison scheme
Effect test

Embodiment 1

[0022] 1. Preparation of nickel-doped lanthanum ferrite

[0023] Under stirring conditions, dissolve 2.51mol lanthanum nitrate in 120mL water, add citric acid and stir to dissolve; then add 4.79mol iron nitrate, then add 190g sodium polyacrylate, then add 42g nickel nitrate aqueous solution, continue stirring for 30min, after drying Drying, roasting and grinding to obtain nickel-doped lanthanum ferrite.

[0024] 2. Preparation of silica-alumina carrier

[0025] Add citric acid to 4.5 g of nickel-doped lanthanum ferrite for later use. Add 300g of pseudo-boehmite powder and 25.0g of fenugreek powder into a kneader, add nitric acid, then add 40.2g of sodium polyacrylate nitric acid solution, and mix well, then add nickel-doped lanthanum ferrite, mix well, and get Alumina precursor. Dissolve 5g of sodium polyacrylate in nitric acid, then add 38g of microsilica powder and 50g of pseudoboehmite powder, and stir evenly to obtain a mixture of microsilica powder-pseudoboehmite-sodiu...

Embodiment 2

[0029] The preparation of nickel-doped lanthanum ferrite is the same as in Example 1, except that 260g of sodium polyacrylate is added, and the preparation of the silica-alumina carrier is the same as in Example 1. The silica-alumina carrier contains 4.4wt% of silicon oxide, 5.7wt% % nickel-doped lanthanum ferrite, 1.6wt% potassium, carrier mesopores accounted for 64.2% of the total pores, and macropores accounted for 25.6% of the total pores. The unit content of sodium polyacrylate in the alumina precursor is 3 times higher than the content of sodium polyacrylate in the silicon source-organic polymer mixture. The preparation method of catalyst 2 is the same as that of Example 1. The content of catalyst 2 is 10.3wt% of nickel oxide, 5.28wt% of molybdenum oxide and 3.1wt% of potassium oxide.

Embodiment 3

[0031] The preparation of nickel-doped lanthanum ferrite is the same as in Example 1, except that 220g of polyacrylic acid is added, and the preparation of the silica-alumina carrier is the same as in Example 1. The silica-alumina carrier contains 8.4wt% of silicon oxide, 2.6wt% Nickel-doped lanthanum ferrite, 0.8wt% potassium, the carrier mesopores account for 54.6% of the total pores, and the macropores account for 33.5% of the total pores. The unit content of polyacrylic acid in the alumina precursor is 3.3 times higher than that in the silicon source-organic polymer mixture. The preparation method of catalyst 3 is the same as that of Example 1. The content of catalyst 3 is 21.1 wt% of nickel oxide, 3.3 wt% of molybdenum oxide and 4.30 wt% of potassium oxide.

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

PropertyMeasurementUnit
specific surface areaaaaaaaaaaa
Login to view more

Abstract

The invention relates to a cracked gasoline C6-C8 distillate selective hydrogenation method, comprising: performing reducing at 400-500 DEG C via a nickel catalyst in the presence of hydrogen, coolingfor passivation, and adjusting to reaction process conditions; subjecting raw oil, hydrogen and the catalyst to contact and selective hydrogenation under the reaction temperature of 40-160 DEG C, reaction pressure of 2.0-5.0 MPa, fresh oil space velocity of 1-10 h<-1> and hydrogen-oil volume ratio of (50-260):1, wherein the catalyst includes a silica-alumina carrier as well as metallic active components of nickel, molybdenum and potassium carried on the carrier; the catalyst has high resistance to gel, arsenic, sulfur and resistance. The method herein is highly adaptable to different materials.

Description

technical field [0001] The present invention relates to a kind of pyrolysis gasoline middle distillate oil (C 6 -C 8 ) selective hydrogenation method, especially a nickel-based selective hydrogenation catalyst for one-stage selective hydrogenation of pyrolysis gasoline. Background technique [0002] Pyrolysis gasoline is an important by-product of steam cracking industrial production of ethylene and propylene, including C5-C10 fractions. The composition of pyrolysis gasoline is very complex, mainly including benzene, toluene, xylene, mono-olefins, di-olefins, straight-chain alkanes, cycloalkanes, and organic compounds of nitrogen, sulfur, oxygen, chlorine and heavy metals, etc., a total of more than 200 components, of which Benzene, toluene, and xylene (collectively referred to as BTX) are about 50-90%, and unsaturated hydrocarbons are 25-30%. According to the characteristics of a large amount of aromatics in pyrolysis gasoline, it has a wide range of uses. It can be used...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
Patent Type & Authority Patents(China)
IPC IPC(8): C10G45/38
CPCC10G45/38
Inventor 陈明海陈新忠施清彩庄旭森
Owner 陈明海
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products