Method and structure for fabricating non volatile memory arrays

Active Publication Date: 2007-02-01
WINBOND ELECTRONICS CORP
View PDF2 Cites 6 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0007] According to the present invention, techniques for fabricating integrated circuit devices are provided. More particularly, the invention provides a method and structure for a non-volatile memory device, commonly called a metal oxide-nitride-oxide on silicon (“MONOS”) memory device. Merely by way of example, the present invention provides a method for processing a cell

Problems solved by technology

Fabrication of this type of MONOS device has many challenges, such as spacer etch to form the control gates, diffusion b

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Method and structure for fabricating non volatile memory arrays
  • Method and structure for fabricating non volatile memory arrays
  • Method and structure for fabricating non volatile memory arrays

Examples

Experimental program
Comparison scheme
Effect test

Example

[0021] According to the present invention, techniques for fabricating integrated circuit devices are provided. More particularly, the invention provides a method and structure for a non-volatile memory device, commonly called a metal oxide-nitride-oxide on silicon (“MONOS”) memory device. Merely by way of example, the present invention provides a method for processing a cell region of the MONOS memory separately while protecting peripheral regions of the device for efficiency and improvement in device characterization. The peripheral regions are then processed while protecting the cell region in other embodiments. Certain steps are performed to process both the peripheral and cell region for efficiency and improved process integration purposes.

[0022] Depending upon the embodiment, the present invention includes various features, which may be used. These features include the following:

[0023] 1. Buried BL formation including using an HDP oxide layer and using a reverse mask to remov...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

PUM

No PUM Login to view more

Abstract

An MONOS integrated circuit device. The device has a semiconductor substrate comprising a silicon bearing material and a shallow trench isolation region formed within the substrate. A P-type well region is formed within the substrate and adjacent to the shallow trench isolation region. The first word gate comprising a first edge and a second edge. The first word gate comprises a first control gate coupled to the first edge and a second control gate coupled to the second edge. Preferably, the second word gate comprises a first edge and a second edge. The second word gate comprises a first control gate coupled to the first edge and a second control gate coupled to the second edge. A common buried bit line is formed within the P-type well region and between the second edge of the first word gate and the first edge of the second word gate. An HDP plasma dielectric is formed overlying the common buried bitline to a height within a vicinity of a first surface of the first word gate and a second surface of the second word gate. In a preferred embodiment, the device has a planarized surface formed from a portion of the HDP plasma dielectric, the first surface, and the second surface. A word line is overlying the planarized surface. The word line is coupled to the first word gate and the second word gate and is overlying the HDP plasma dielectric. The device has a refractory metal layer formed overlying the word line, a hard mask layer overlying the refractory metal layer, and a cap layer formed overlying the hard mask layer. The word line, refractory metal layer, hard mask layer, and cap layer form a planarized structure.

Description

BACKGROUND OF THE INVENTION [0001] The present invention relates generally to integrated circuit devices. More particularly, the invention provides a method and structure for a non-volatile memory device, commonly called a metal oxide-nitride-oxide on silicon (“MONOS”) memory device. Merely by way of example, the present invention provides a method for processing a cell region of the MONOS memory separately while protecting peripheral regions of the device for efficiency and improvement in device characterization. The peripheral regions are then processed while protecting the cell region in other embodiments. Certain steps are performed to process both the peripheral and cell region for efficiency and improved process integration purposes. [0002] Integrated circuits proliferated through the years. Certain types of integrated circuits include memory devices. The memory devices include volatile memories such as dynamic random access memory devices, commonly called “DRAMs” and non-vola...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to view more

Application Information

Patent Timeline
no application Login to view more
IPC IPC(8): H01L21/336
CPCH01L27/105H01L27/11573H01L27/11568H01L27/115H10B69/00H10B43/40H10B43/30
Inventor CHOU, KAI CHENGLAUN, HARRYHUANG, KENLINYOUNG, J.C.WANG, ARTHUR
Owner WINBOND ELECTRONICS CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products