Looking for breakthrough ideas for innovation challenges? Try Patsnap Eureka!

Microfiber Reinforcement for Abrasive Tools

a technology of microfiber reinforcement and abrasive tools, which is applied in the direction of manufacturing tools, other chemical processes, chemistry apparatus and processes, etc., can solve the problems of reducing the g-ratio of abrasive tool face, affecting the life of the chopping strand reinforced wheel, and affecting the grinding performance of the abrasive tool face, etc., to achieve the effect of improving the g-ratio, improving the life of the chopping

Inactive Publication Date: 2012-04-26
SAINT GOBAIN ABRASIVES INC +1
View PDF12 Cites 22 Cited by
  • Summary
  • Abstract
  • Description
  • Claims
  • Application Information

AI Technical Summary

Benefits of technology

[0006]One embodiment of the present invention provides a composition, comprising an organic bond material (e.g., thermosetting resin, thermoplastic resin, or rubber), an abrasive material dispersed in the organic bond material, and microfibers uniformly dispersed in the organic bond material. The microfibers are individual filaments and may include, for example, mineral wool fibers, slag wool fibers, rock wool fibers, stone wool fibers, glass fibers, and in particular milled glass fibers, ceramic fibers, milled basalt fibers, carbon fibers, aramid fibers, and polyamide fibers, and combinations thereof. The microfibers can have an average length, for example, of less than about 1000 μm. In one particular case, the microfibers have an average length in the range of about 100 to 500 μm and a diameter less than about 10 microns. In some embodiments, chopped strand fibers, e.g., fiberglass chopped strand fibers, are also present. In many instances the composition further includes one or more fillers with at least one being an active filler, capable of chemically reacting with the microfibers at the temperatures that occur during grinding. These chemical reactions of the active filler and microfibers provide various abrasive process benefits (e.g., improved wheel life, higher G-ratio, and / or anti-loading of abrasive tool face). Examples of suitable active fillers include manganese compounds, silver compounds, boron compounds, phosphorous compounds, and combinations thereof. In one specific such case, the one or more active fillers include manganese dichloride. Other fillers that do not chemically react with the microfibers may also be incorporated.
[0012]Aspects of the invention provide compositions in the form of abrasive articles such as, for example, grinding wheels or other bonded abrasive tools that exhibit improved strength (as reflected, e.g., by the burst speed characterizing the tool) and impact resistance, with tools according to embodiments of the invention being robust and less prone to breakage. Abrasive articles according to embodiments of the invention also display improved wheel wear rate, G-ratio and a longer tool life. Examples of the bonded articles disclosed herein can exhibit good thermal shock resistance with little or no thermal cracking being observed. Abrasive articles that contain glass web reinforcements, and, optionally, chopped strand fibers, typically display improved impact properties.

Problems solved by technology

In any such cases, chopped strand fiber reinforced wheels typically suffer from a number of problems, including lower strength, poor grinding performance as well as inadequate wheel life, presumably due to incomplete dispersal of the filaments within the chopped strand fiber bundle.

Method used

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
View more

Image

Smart Image Click on the blue labels to locate them in the text.
Viewing Examples
Smart Image
  • Microfiber Reinforcement for Abrasive Tools
  • Microfiber Reinforcement for Abrasive Tools

Examples

Experimental program
Comparison scheme
Effect test

example 1

[0042]Example 1, which includes Tables 3, 4, and 5, demonstrates properties of bond bars and composite bars with and without mineral wool fibers. Note that the bond bars contain no grinding agent, whereas the composite bars include a grinding agent and reflect a grinding wheel composition. As can be seen in Table 3, components of eight sample bond compositions are provided (in volume percent, or vol %). Some of the bond samples include no reinforcement (sample #s 1 and 5), some include milled glass fibers or chopped strand fibers (sample #s 3, 4, 7, and 8), and some include Sloss PMF® mineral wool (sample #s 2 and 6) in accordance with one embodiment of the present invention. Other types of individual filament fibers (e.g., ceramic or glass fiber) may be used as well, as will be apparent in light of this disclosure. Note that the brown fused alumina (220 grit) in the bond is used as a filler in these bond samples, but may also operate as a secondary abrasive (primary abrasive may be...

example 2

[0047]Example 2, which includes Tables 6, 7, and 8, demonstrates composite properties as a function of mix quality. As can be seen in Table 6, components of eight sample compositions are provided (in vol %). Sample A includes no reinforcement, and samples B through H include Sloss PMF® mineral wool in accordance with one embodiment of the present invention. Other types of single filament microfiber (e.g., ceramic or glass fiber) may be used as well, as previously described. The bond material of sample A includes silicon carbide (220 grit) as a filler, and the bonds of samples B through H use brown fused alumina (220 grit) as a filler. As previously noted, such fillers assist with dispersal and may also operate as secondary abrasives. In each of samples A through H, the primary abrasive used is a combination of brown fused alumina 60 grit and 80 grit. Note that a single primary abrasive grit can be mixed with the bond as well, and may vary in grit size (e.g., 6 grit to 220 grit), dep...

example 3

[0052]Example 3, which includes Tables 9 and 10, demonstrates grinding performance as a function of mix quality. As can be seen in Table 9, components of two sample formulations are provided (in vol %). The formulations are identical, except that Formulation 1 was mixed for 45 minutes and Formulation 2 was mixed for 15 minutes (the mixing method used was identical as well, except for the mixing time as noted). Each formulation includes Sloss PMF® mineral wool, in accordance with one embodiment of the present invention. Other types of single filament microfiber (e.g., glass or ceramic fiber) may be used as well, as previously described.

TABLE 9Grinding Performance as a Function of Mix QualityFormulation Formulation SequenceComponent1 (vol %)2 (vol %)Step 1: BondDurez 2972222.3822.38PreparationBrown Fused 3.223.22Alumina-220 gritSloss PMF ®3.223.22Iron Pyrite5.065.06Zinc Sulfide1.191.19Cryolite3.283.28Lime1.191.19Tridecyl alcohol1.111.11Step 2: Mixing45 minutes15 minutesBond QualityWt ...

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

PUM

PropertyMeasurementUnit
aspect ratioaaaaaaaaaa
aspect ratioaaaaaaaaaa
lengthaaaaaaaaaa
Login to View More

Abstract

An abrasive article includes an organic bond material, an abrasive material dispersed in the organic bond material, mineral wool microfibers uniformly dispersed in the organic bond material, the mineral wool microfibers being individual filaments, one or more reinforcement and / or chopped strand fibers dispersed in the organic bond material and one or more active fillers including, for example, a manganese compound. The abrasive article can be used in the abrasive processing of a workpiece.

Description

RELATED APPLICATIONS[0001]This application is a Continuation-in-Part of U.S. application Ser. No. 11 / 895,641 filed on Aug. 24, 2007, which claims the benefit under 35 USC 119(e) of U.S. Provisional Application No. 60 / 844,862, filed on Sep. 15, 2006, both of which are incorporated herein by reference in their entirety.BACKGROUND OF THE INVENTION[0002]Chopped strand fibers are used to reinforce resin-based grinding wheels. The chopped strand fibers typically 3-4 mm in length, are a plurality of filaments. The number of filaments can vary depending on the manufacturing process but typically consists of 400 to 6000 filaments per bundle. The filaments are held together by an adhesive known as a sizing, binder, or coating that should ultimately be compatible with the resin matrix. One example of a chopped strand fiber is referred to as 183 Cratec®, available from Owens Corning.[0003]Incorporation of chopped strand fibers into a dry grinding wheel mix is generally accomplished by blending ...

Claims

the structure of the environmentally friendly knitted fabric provided by the present invention; figure 2 Flow chart of the yarn wrapping machine for environmentally friendly knitted fabrics and storage devices; image 3 Is the parameter map of the yarn covering machine
Login to View More

Application Information

Patent Timeline
no application Login to View More
Patent Type & Authority Applications(United States)
IPC IPC(8): B24B1/00B24D3/20
CPCB24D3/342B24D11/00B24D7/04
Inventor KLETT, MICHAEL W.CONLEY, KAREN M.PARSONS, STEVEN F.ZHANG, HANKHAUND, ARUP K.
Owner SAINT GOBAIN ABRASIVES INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products